Clin Exp Otorhinolaryngol.  2022 Aug;15(3):230-246. 10.21053/ceo.2022.00052.

Clinical and Laboratory Features of Various Criteria of Eosinophilic Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis

Affiliations
  • 1Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Department of Surgery, College of Medicine, Taif University, Taif, Saudi Arabia
  • 3Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea

Abstract


Objectives
. The aim of this study was to evaluate the differences in clinical and laboratory features between eosinophilic chronic rhinosinusitis (ECRS) and non-ECRS and to compare diagnostic criteria for ECRS.
Methods
. We compared clinical features and/or laboratory findings classified as ECRS and non-ECRS according to various diagnostic criteria (histological and clinical). We also analyzed studies to compare endoscopic findings, symptom scores, laboratory findings, and computed tomography (CT) findings between ECRS and non-ECRS.
Results
. Our search included 55 studies with 6,143 patients. A comparison of clinical features and/or laboratory criteria with histological criteria showed no significant differences in nasal symptom scores and CT scores according to criteria. Serum eosinophil levels showed differences across the criteria, with ECRS consistently characterized by higher serum eosinophil levels than non-ECRS. Among the four criteria, the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis (JESREC) criteria and tissue eosinophilia (≥70) were associated with decreased olfactory function. In laboratory findings, the eosinophil percentage (standardized mean difference [SMD], 1.561; 95% confidence interval [CI], 1.329–1.794; P<0.001) and eosinophil count (SMD, 1.493; 95% CI, 1.134–1.852; P<0.001) of eosinophils were higher in ECRS than non-ECRS. In clinical findings, nasal symptom scores (SMD, 0.382; 95% CI, 0.156–0.608; P<0.001), endoscopic nasal polyp scores (SMD, 0.581; 95% CI, 0.314–0.848; P<0.001), and olfactory dysfunction (SMD, 0.416; 95% CI, 0.037–0.794; P=0.031) were higher in ECRS than in non-ECRS. With regard to CT findings, the whole-sinus opacification score (SMD, 0.824; 95% CI, 0.588–1.059; P<0.001) was higher in ECRS than in non-ECRS. In particular, there were significant differences in anterior ethmoid sinus and sphenoid sinus opacification.
Conclusion
. ECRS and non-ECRS differ in their clinical and laboratory features. When histological confirmation is difficult on an outpatient basis, ECRS could be diagnosed using clinical features and/or laboratory findings.

Keyword

Eosinophils; Sinusitis; Biomarker; Endoscopy; Tomography; X-Ray Computed

Figure

  • Fig. 1. Flow diagram of the selection of studies for analysis.

  • Fig. 2. Forest plot. (A) Percentage of eosinophils, (B) Eosinophil count and (C) total immunoglobulin E in eosinophilic and non-eosinophilic chronic rhinosinusitis. SD, standard deviation; SMD, standardized mean difference; CI, confidence interval; HPF, high-power field.

  • Fig. 3. Forest plot. (A) Nasal symptom scores and (B) olfactory dysfunction in eosinophilic and non-eosinophilic chronic rhinosinusitis. (C) Endoscopic nasal polyp scores in eosinophilic and non-eosinophilic chronic rhinosinusitis. SD, standard deviation; SMD, standardized mean difference; CI, confidence interval; HPF, high-power field.

  • Fig. 4. Whole-sinus opacification scores in eosinophilic and non-eosinophilic chronic rhinosinusitis. SD, standard deviation; SMD, standardized mean difference; CI, confidence interval; HPF, high-power field.

  • Fig. 5. Comparison of comorbidities between eosinophilic and non-eosinophilic chronic rhinosinusitis. (A) Aspirin intolerance. (B) Allergic rhinitis. (C) Aatopy. Comparison of comorbidities between eosinophilic and non-eosinophilic chronic rhinosinusitis. (D) Asthma. (E) Presence of nasal polyp. (F) Presence of bilateral nasal polyps. OR, odds ratio; CI, confidence interval.


Cited by  1 articles

Efficacy of Steroid-Impregnated Spacers After Endoscopic Sinus Surgery in Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis
Se Hwan Hwang, Sung Won Kim, Mohammed Abdullah Basurrah, Do Hyun Kim
Clin Exp Otorhinolaryngol. 2023;16(2):148-158.    doi: 10.21053/ceo.2022.01718.


Reference

1. McHugh T, Levin M, Snidvongs K, Banglawala SM, Sommer DD. Comorbidities associated with eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Clin Otolaryngol. 2020; Jul. 45(4):574–83.
2. Wang ET, Zheng Y, Liu PF, Guo LJ. Eosinophilic chronic rhinosinusitis in East Asians. World J Clin Cases. 2014; Dec. 2(12):873–82.
3. Hu Y, Cao PP, Liang GT, Cui YH, Liu Z. Diagnostic significance of blood eosinophil count in eosinophilic chronic rhinosinusitis with nasal polyps in Chinese adults. Laryngoscope. 2012; Mar. 122(3):498–503.
4. Sakuma Y, Ishitoya J, Komatsu M, Shiono O, Hirama M, Yamashita Y, et al. New clinical diagnostic criteria for eosinophilic chronic rhinosinusitis. Auris Nasus Larynx. 2011; Oct. 38(5):583–8.
5. Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015; Aug. 70(8):995–1003.
6. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; Jul. 339:b2535.
7. Kim DH, Kim SW, Stybayeva G, Lim SY, Hwang SH. Predictive value of olfactory and taste symptoms in the diagnosis of COVID-19: a systematic review and meta-analysis. Clin Exp Otorhinolaryngol. 2021; Aug. 14(3):312–20.
8. Kim DH, Lee J, Kim SW, Hwang SH. The efficacy of hypotensive agents on intraoperative bleeding and recovery following general anesthesia for nasal surgery: a network meta-analysis. Clin Exp Otorhinolaryngol. 2021; May. 14(2):200–9.
9. Ky LM, Uyen NT, Phuc ND, Xuong NT, Hai TX, Tuan LA, et al. Pathogenesis of eosinophilic vs. non-eosinophilic chronic rhinosinusitis with nasal polyposis in Vietnamese. Genet Mol Res. 2021; Mar. 20(1):gmr18733.
10. Takeno S, Taruya T, Ueda T, Noda N, Hirakawa K. Increased exhaled nitric oxide and its oxidation metabolism in eosinophilic chronic rhinosinusitis. Auris Nasus Larynx. 2013; Oct. 40(5):458–64.
11. Kim DK, Jin HR, Eun KM, Mutusamy S, Cho SH, Oh S, et al. Non-eosinophilic nasal polyps shows increased epithelial proliferation and localized disease pattern in the early stage. PLoS One. 2015; Oct. 10(10):e0139945.
12. Meng Y, Lou H, Wang C, Zhang L. Predictive significance of computed tomography in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2016; Aug. 6(8):812–9.
13. Tojima I, Kouzaki H, Shimizu S, Ogawa T, Arikata M, Kita H, et al. Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis. Clin Immunol. 2016; Sep. 170:1–8.
14. Baba S, Kondo K, Suzukawa M, Ohta K, Yamasoba T. Distribution, subtype population, and IgE positivity of mast cells in chronic rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol. 2017; Aug. 119(2):120–8.
15. Kambara R, Minami T, Akazawa H, Tsuji F, Sasaki T, Inohara H, et al. Lower airway inflammation in eosinophilic chronic rhinosinusitis as determined by exhaled nitric oxide. Int Arch Allergy Immunol. 2017; 173(4):225–32.
16. Kubota K, Takeno S, Taruya T, Sasaki A, Ishino T, Hirakawa K. IL-5 and IL-6 are increased in the frontal recess of eosinophilic chronic rhinosinusitis patients. J Otolaryngol Head Neck Surg. 2017; May. 46(1):36.
17. Sreeparvathi A, Kalyanikuttyamma LK, Kumar M, Sreekumar N, Veerasigamani N. Significance of blood eosinophil count in patients with chronic rhinosinusitis with nasal polyposis. J Clin Diagn Res. 2017; Feb. 11(2):MC08–11.
18. Xu M, Chen D, Zhou H, Zhang W, Xu J, Chen L. The role of periostin in the occurrence and progression of eosinophilic chronic sinusitis with nasal polyps. Sci Rep. 2017; Aug. 7(1):9479.
19. Ho J, Hamizan AW, Alvarado R, Rimmer J, Sewell WA, Harvey RJ. Systemic predictors of eosinophilic chronic rhinosinusitis. Am J Rhinol Allergy. 2018; Jul. 32(4):252–7.
20. Tsuda T, Maeda Y, Nishide M, Koyama S, Hayama Y, Nojima S, et al. Eosinophil-derived neurotoxin enhances airway remodeling in eosinophilic chronic rhinosinusitis and correlates with disease severity. Int Immunol. 2019; Feb. 31(1):33–40.
21. Uraguchi K, Kariya S, Makihara S, Okano M, Haruna T, Oka A, et al. Pulmonary function in patients with eosinophilic chronic rhinosinusitis. Auris Nasus Larynx. 2018; Jun. 45(3):476–81.
22. Wakayama N, Matsune S, Okubo K. Delayed type of allergic skin reaction to Candida albicans in eosinophilic rhinosinusitis cases. Auris Nasus Larynx. 2018; Feb. 45(1):111–5.
23. Hwang CS, Park SC, Cho HJ, Park DJ, Yoon JH, Kim CH. Eosinophil extracellular trap formation is closely associated with disease severity in chronic rhinosinusitis regardless of nasal polyp status. Sci Rep. 2019; May. 9(1):8061.
24. Ito T, Ikeda S, Asamori T, Honda K, Kawashima Y, Kitamura K, et al. Increased expression of pendrin in eosinophilic chronic rhinosinusitis with nasal polyps. Braz J Otorhinolaryngol. 2019; Nov-Dec. 85(6):760–5.
25. Kashiwagi T, Tsunemi Y, Akutsu M, Nakajima I, Haruna S. Postoperative evaluation of olfactory dysfunction in eosinophilic chronic rhinosinusitis: comparison of histopathological and clinical findings. Acta Otolaryngol. 2019; Oct. 139(10):881–9.
26. Kim JY, Han YE, Seo Y, Choe G, Kim MK, Huh G, et al. Revisiting the clinical scoring system for the prognosis of chronic rhinosinusitis with nasal polyps. Yonsei Med J. 2019; Jun. 60(6):578–84.
27. Liu C, Yan B, Qi S, Zhang Y, Zhang L, Wang C. Predictive significance of Charcot-Leyden crystals for eosinophilic chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2019; Nov. 33(6):671–80.
28. Nakayama T, Sugimoto N, Okada N, Tsurumoto T, Mitsuyoshi R, Takaishi S, et al. JESREC score and mucosal eosinophilia can predict endotypes of chronic rhinosinusitis with nasal polyps. Auris Nasus Larynx. 2019; Jun. 46(3):374–83.
29. Shen KH, Wang YH, Hsu TW, Hsieh LC, Sun FJ, Wang YP. Differential effects of postoperative oral corticosteroid on eosinophilic vs. non-eosinophilic CRSwNP subtypes. Am J Otolaryngol. 2019; JanFeb. 40(1):22–9.
30. Tsuzuki K, Hashimoto K, Okazaki K, Nishikawa H, Sakagami M. Predictors of disease progression after endoscopic sinus surgery in patients with chronic rhinosinusitis. J Laryngol Otol. 2019; Aug. 133(8):678–84.
31. Wang F, Yang Y, Wu Q, Chen H. Histopathologic analysis in chronic rhinosinusitis: impact on quality of life outcomes. Am J Otolaryngol. 2019; May-Jun. 40(3):423–6.
32. Yoshida K, Takabayashi T, Imoto Y, Sakashita M, Narita N, Fujieda S. Reduced nasal nitric oxide levels in patients with eosinophilic chronic rhinosinusitis. Allergol Int. 2019; Apr. 68(2):225–32.
33. Fadda GL, Galizia A, Galizia G, Castelnuovo P, Bignami M, Cavallo G. Multiparametric analysis of factors associated with eosinophilic chronic rhinosinusitis with nasal polyps. Ear Nose Throat J. 2020; Oct. 6. [Epub]. https://doi.org/10.1177/0145561320960357.
34. Imoto Y, Takabayashi T, Sakashita M, Kato Y, Yoshida K, Kidoguchi M, et al. Enhanced 15-lipoxygenase 1 production is related to periostin expression and eosinophil recruitment in eosinophilic chronic rhinosinusitis. Biomolecules. 2020; Nov. 10(11):1568.
35. Lv H, Liu PQ, Xiang R, Zhang W, Chen SM, Kong YG, et al. Predictive and diagnostic value of nasal nitric oxide in eosinophilic chronic rhinosinusitis with nasal polyps. Int Arch Allergy Immunol. 2020; 181(11):853–61.
36. Sivrice ME, Okur E, Yasan H, Tuz M, Kumbul YC, Akin V. Can the systemic immune inflammation index preoperatively predict nasal polyp subtypes. Eur Arch Otorhinolaryngol. 2020; Nov. 277(11):3045–50.
37. Xu Q, Du K, Zheng M, Duan S, Jia S, Chen H, et al. Application of clinical scores in the differential diagnosis of chronic rhinosinusitis with nasal polyps in a chinese population. Am J Rhinol Allergy. 2020; May. 34(3):401–8.
38. Yao Y, Yang C, Yi X, Xie S, Sun H. Comparative analysis of inflammatory signature profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyposis. Biosci Rep. 2020; Feb. 40(2):BSR20193101.
39. Yun Y, Kanda A, Kobayashi Y, Van Bui D, Suzuki K, Sawada S, et al. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol Int. 2020; Apr. 69(2):232–8.
40. Zhu M, Gao X, Zhu Z, Hu X, Zhou H, Liu J. The roles of nasal nitric oxide in diagnosis and endotypes of chronic rhinosinusitis with nasal polyps. J Otolaryngol Head Neck Surg. 2020; Sep. 49(1):68.
41. Zhu Z, Wang W, Zhang X, Wang X, Zha Y, Chen Y, et al. Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2020; Aug. 58(4):314–22.
42. Ahn SH, Lee EJ, Ha JG, Hwang CS, Yoon JH, Kim CH, et al. Comparison of olfactory and taste functions between eosinophilic and non-eosinophilic chronic rhinosinusitis. Auris Nasus Larynx. 2020; Oct. 47(5):820–7.
43. Abbas EE, Li C, Xie A, Lu S, Tang L, Liu Y, et al. Distinct clinical pathology and microbiota in chronic rhinosinusitis with nasal polyps endotypes. Laryngoscope. 2021; Jan. 131(1):E34–44.
44. Feng T, Miao P, Liu B, Liu Y, Bao X, Xu J, et al. Sinus microbiota in patients with eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Front Cell Infect Microbiol. 2021; Jul. 11:672355.
45. Kawasumi T, Takeno S, Nishimura M, Ishino T, Ueda T, Hamamoto T, et al. Differential expression of angiotensin-converting enzyme-2 in human paranasal sinus mucosa in patients with chronic rhinosinusitis. J Laryngol Otol. 2021; Sep. 135(9):773–8.
46. Kowalik K, Waniewska-Leczycka M, Sarnowska E, Rusetska N, Ligaj M, Chrzan A, et al. The SWI/SNF complex in eosinophilic and non eosinophilic chronic rhinosinusitis. Acta Otorhinolaryngol Ital. 2021; Apr. 41(2):159–67.
47. Rha MS, Yoon YH, Koh JY, Jung JH, Lee HS, Park SK, et al. IL-17Aproducing sinonasal MAIT cells in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022; Feb. 149(2):599–609.
48. Takahashi K, Sadamatsu H, Suzuki K, Tashiro H, Kimura S, Kuratomi Y, et al. Evaluation of olfactory dysfunction to estimate the presence of eosinophilic chronic rhinosinusitis in patients with asthma. Respir Investig. 2021; Jan. 59(1):126–34.
49. Terada T, Inui T, Moriyama K, Noro K, Kikuoka Y, Omura S, et al. Effects of endoscopic sinus surgery for eosinophilic chronic rhinosinusitis on respiratory functions and FeNO production in the lower respiratory tract. Ear Nose Throat J. 2021; Jul. 19. [Epub]. https://doi.org/10.1177/01455613211032006.
50. Wang Y, Chen S, Wang W, Chen J, Kong W, Wang Y. Role of P2X7R in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Mol Med Rep. 2021; Jul. 24(1):521.
51. Zhong B, Yuan T, Du J, Tan K, Yang Q, Liu F, et al. The role of preoperative blood eosinophil counts in distinguishing chronic rhinosinusitis with nasal polyps phenotypes. Int Forum Allergy Rhinol. 2021; Jan. 11(1):16–23.
52. Nakayama T, Yoshikawa M, Asaka D, Okushi T, Matsuwaki Y, Otori N, et al. Mucosal eosinophilia and recurrence of nasal polyps: new classification of chronic rhinosinusitis. Rhinology. 2011; Oct. 49(4):392–6.
53. Kouzaki H, Matsumoto K, Kato T, Tojima I, Shimizu S, Shimizu T. Epithelial cell-derived cytokines contribute to the pathophysiology of eosinophilic chronic rhinosinusitis. J Interferon Cytokine Res. 2016; Mar. 36(3):169–79.
54. Okada N, Nakayama T, Asaka D, Inoue N, Tsurumoto T, Takaishi S, et al. Distinct gene expression profiles and regulation networks of nasal polyps in eosinophilic and non-eosinophilic chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018; May. 8(5):592–604.
55. Snidvongs K, Lam M, Sacks R, Earls P, Kalish L, Phillips PS, et al. Structured histopathology profiling of chronic rhinosinusitis in routine practice. Int Forum Allergy Rhinol. 2012; Sep-Oct. 2(5):376–85.
56. Cao PP, Zhang YN, Liao B, Ma J, Wang BF, Wang H, et al. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2014; 44(5):690–700.
57. Lin D, Lin H, Xiong X. Expression and role of BAG-1 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation. 2014; Dec. 37(6):1912–8.
58. Lin H, Li Z, Lin D, Zheng C, Zhang W. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation. 2016; Dec. 39(6):2045–52.
59. Aslan F, Altun E, Paksoy S, Turan G. Could eosinophilia predict clinical severity in nasal polyps. Multidiscip Respir Med. 2017; Aug. 12:21.
60. Liao B, Cao PP, Zeng M, Zhen Z, Wang H, Zhang YN, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015; Sep. 70(9):1169–80.
61. Snidvongs K, Chin D, Sacks R, Earls P, Harvey RJ. Eosinophilic rhinosinusitis is not a disease of ostiomeatal occlusion. Laryngoscope. 2013; May. 123(5):1070–4.
62. Chitsuthipakorn W, Seresirikachorn K, Sommer DD, McHugh T, Snidvongs K. Endotypes of chronic rhinosinusitis across ancestry and geographic regions. Curr Allergy Asthma Rep. 2018; Jul. 18(9):46.
63. Lin H, Ba G, Tang R, Li M, Li Z, Li D, et al. Increased expression of TXNIP facilitates oxidative stress in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2021; Sep. 35(5):607–14.
64. Topal O, Kulaksizoglu S, Erbek SS. Oxidative stress and nasal polyposis: does it affect the severity of the disease. Am J Rhinol Allergy. 2014; Jan-Feb. 28(1):e1–4.
65. Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res. 2011; Aug. 25. 12(1):114.
66. Deo SS, Mistry KJ, Kakade AM, Niphadkar PV. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India. 2010; Apr. 27(2):66–71.
67. Ryu G, Kim DW. Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2020; Feb. 20(1):1–8.
68. Lotsch J, Hummel T. Clinical usefulness of self-rated olfactory performance: a data science-based assessment of 6000 patients. Chem Senses. 2019; Jul. 44(6):357–64.
69. Lin SH, Chu ST, Yuan BC, Shu CH. Survey of the frequency of olfactory dysfunction in Taiwan. J Chin Med Assoc. 2009; Feb. 72(2):68–71.
70. McHugh T, Snidvongs K, Xie M, Banglawala S, Sommer D. High tissue eosinophilia as a marker to predict recurrence for eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2018; Dec. 8(12):1421–9.
71. Toro MD, Antonio MA, Alves Dos Reis MG, de Assumpcao MS, Sakano E. Achieving the best method to classify eosinophilic chronic rhinosinusitis: a systematic review. Rhinology. 2021; Aug. 59(4):330–9.
72. Ortega H, Llanos JP, Lafeuille MH, Duh MS, Germain G, Lejeune D, et al. Effects of systemic corticosteroids on blood eosinophil counts in asthma: real-world data. J Asthma. 2019; Aug. 56(8):808–15.
73. Vaidyanathan S, Barnes M, Williamson P, Hopkinson P, Donnan PT, Lipworth B. Treatment of chronic rhinosinusitis with nasal polyposis with oral steroids followed by topical steroids: a randomized trial. Ann Intern Med. 2011; Mar. 154(5):293–302.
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr