Anesth Pain Med.  2022 Apr;17(2):206-212. 10.17085/apm.21080.

Cause of postoperative mortality in patients with end-stage renal disease

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea

Abstract

Background
The number of patients with end-stage renal disease (ESRD) who are dependent on hemodialysis is increasing rapidly. As a result, more patients with ESRD need surgery. These patients have a significantly higher risk of postoperative death than those with normal kidney function. Therefore, this study analyzed the causes of postoperative mortality in ESRD patients undergoing surgery under general anesthesia and the risk factors for postoperative mortality. Methods: This retrospective analysis examined the mortality of ESRD patients, 20 to 80 years old, undergoing surgery under general anesthesia. We excluded patients who underwent cardiac, cancer, or emergency surgery or organ transplantation from the analysis. The primary outcome was the cause of postoperative 30-day mortality in ESRD patients. We also assessed the mortality rate and risk factors. Results: There were 2,459 eligible ESRD patients. When patients underwent multiple surgeries during the study period, only the last surgery was considered. In total, 167 patients died during the study period, including 65 within 30 days postoperatively. The cause of death was sepsis in 22 cases (33.8%) and a major cardiac event in 16 (24.6%). Atrial fibrillation, current angina, previous myocardial infarction, asthma, lower hemoglobin and albumin levels, and a larger intraoperative colloid volume were likely to increase mortality. Conclusions: Our study suggests that immunological issues have a significant role in the death of ESRD patients after general anesthesia.

Keyword

Cause of death; End-stage renal disease; General anesthesia; Infection

Reference

1. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012; 120:c179–84.
Article
2. Kanda H, Hirasaki Y, Iida T, Kanao-Kanda M, Toyama Y, Chiba T, et al. Perioperative management of patients with end-stage renal disease. J Cardiothorac Vasc Anesth. 2017; 31:2251–67.
Article
3. Hall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z, Li X, et al. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res. 2021; 117:1859–76.
Article
4. Hamrahian SM, Falkner B. Hypertension in chronic kidney disease. Adv Exp Med Biol. 2017; 956:307–25.
Article
5. Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016; 12:73–81.
Article
6. Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, et al. US renal data system 2019 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2020; 75(1 Suppl 1):A6–7.
Article
7. Korean Society of Nephrology. 2019 Korean ESRD registry. Seoul: Korean Society of Nephrology;2019.
8. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017; 389:1238–52.
Article
9. Palamuthusingam D, Johnson DW, Hawley CM, Pascoe E, Sivalingam P, Fahim M. Perioperative outcomes and risk assessment in dialysis patients: current knowledge and future directions. Intern Med J. 2019; 49:702–10.
Article
10. Mathew A, Devereaux PJ, O'Hare A, Tonelli M, Thiessen-Philbrook H, Nevis IF, et al. Chronic kidney disease and postoperative mortality: a systematic review and meta-analysis. Kidney Int. 2008; 73:1069–81.
Article
11. Chikuda H, Yasunaga H, Horiguchi H, Takeshita K, Kawaguchi H, Matsuda S, et al. Mortality and morbidity in dialysis-dependent patients undergoing spinal surgery: analysis of a national administrative database in Japan. J Bone Joint Surg Am. 2012; 94:433–8.
12. Brakoniecki K, Tam S, Chung P, Smith M, Alfonso A, Sugiyama G. Mortality in patients with end-stage renal disease and the risk of returning to the operating room after common general surgery procedures. Am J Surg. 2017; 213:395–8.
Article
13. Currie A, Malietzis G, Askari A, Nachiappan S, Swift P, Jenkins JT, et al. Impact of chronic kidney disease on postoperative outcome following colorectal cancer surgery. Colorectal Dis. 2014; 16:879–85.
Article
14. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016; 315:801–10.
Article
15. Nagayoshi Y, Kawano H, Kojima S, Soejima H, Kaikita K, Nakayama M, et al. Significance of coronary vasospasm in the perioperative management of non-cardiac surgery. Circ J. 2012; 76:1965–71.
Article
16. Briasoulis A, Bakris GL. Chronic kidney disease as a coronary artery disease risk equivalent. Curr Cardiol Rep. 2013; 15:340.
Article
17. Lieberman JR, Fuchs MD, Haas SB, Garvin KL, Goldstock L, Gupta R, et al. Hip arthroplasty in patients with chronic renal failure. J Arthroplasty. 1995; 10:191–5.
Article
18. Sakalkale DP, Hozack WJ, Rothman RH. Total hip arthroplasty in patients on long-term renal dialysis. J Arthroplasty. 1999; 14:571–5.
Article
19. De la Garza Ramos R, Jain A, Nakhla J, Nasser R, Puvanesarajah V, Hassanzadeh H, et al. Postoperative morbidity and mortality after elective anterior cervical fusion in patients with chronic and end-stage renal disease. World Neurosurg. 2016; 95:480–5.
Article
20. Erkocak OF, Yoo JY, Restrepo C, Maltenfort MG, Parvizi J. Incidence of infection and inhospital mortality in patients with chronic renal failure after total joint arthroplasty. J Arthroplasty. 2016; 31:2437–441.
Article
21. Rosenfeldt F, Wilson M, Lee G, Kure C, Ou R, Braun L, et al. Oxidative stress in surgery in an ageing population: pathophysiology and therapy. Exp Gerontol. 2013; 48:45–54.
Article
22. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol. 2008; 3:1526–33.
Article
23. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 2008; 73: 391-8. Erratum in: Kidney Int. 2008; 74:393.
24. Ben-Eliyahu S, Page GG, Yirmiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999; 80:880–8.
Article
25. Cendoroglo M, Jaber BL, Balakrishnan VS, Perianayagam M, King AJ, Pereira BJ. Neutrophil apoptosis and dysfunction in uremia. J Am Soc Nephrol. 1999; 10:93–100.
Article
26. Sela S, Shurtz-Swirski R, Cohen-Mazor M, Mazor R, Chezar J, Shapiro G, et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J Am Soc Nephrol 2005; 16: 2431-8. Erratum in: J Am Soc Nephrol. 2005; 16:2814.
27. Memoli B, Postiglione L, Cianciaruso B, Bisesti V, Cimmaruta C, Marzano L, et al. Role of different dialysis membranes in the release of interleukin-6-soluble receptor in uremic patients. Kidney Int. 2000; 58:417–24.
Article
28. Pecoits-Filho R, Gonçalves S, Barberato SH, Bignelli A, Lindholm B, Riella MC, et al. Impact of residual renal function on volume status in chronic renal failure. Blood Purif. 2004; 22:285–92.
Article
29. Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, et al. CRIC Study Investigators. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012; 7:1938–46.
30. Yao Q, Axelsson J, Stenvinkel P, Lindholm B. Chronic systemic inflammation in dialysis patients: an update on causes and consequences. ASAIO J. 2004; 50:lii–lvii.
Article
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr