Cancer Res Treat.  2022 Jul;54(3):926-936. 10.4143/crt.2021.951.

Association between Kidney Function, Proteinuria and the Risk of Multiple Myeloma: A Population-Based Retrospective Cohort Study in South Korea

Affiliations
  • 1Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC, USA
  • 2Division of Nephrology, Department of Medicine, Columbia University, NY, USA
  • 3Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 4Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
  • 5Department of Statistics and Actuarial Science, College of Natural Sciences, Soongsil University, Seoul, Korea
  • 6Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 7International Healthcare Center, Samsung Medical Center, Seoul, Korea

Abstract

Purpose
While renal impairment is one of the first clinical manifestations of multiple myeloma (MM), declined renal function may conversely be a risk factor for cancers including MM. In this study, we investigated the relationship between chronic kidney disease and MM at a population level.
Materials and Methods
A total of 9,809,376 adults who participated in a nationwide health screening program and had no MM, cancer or end-stage renal disease at baseline were investigated for incidence of MM. The impact of estimated glomerular filtration rate (eGFR) and random urine dipstick proteinuria, and interactive associations of the two factors on the MM incidence were evaluated.
Results
The general incidence of MM was 4.8 per 100,000 person-years (mean follow-up of 8.3 years). Participants with eGFR < 60 mL/min/1.73 m2 (5.8% of participants) had higher MM incidence than those with eGFR ≥ 60 mL/min/1.73 m2 (adjusted hazard ratio, 1.29; 95% confidence interval, 1.17 to 1.43). When eGFR was graded into five levels, there was a significant inverse dose-response relationship between eGFR level and MM incidence at the lower eGFR levels (reference: eGFR 60-89 mL/min/1.73 m2). A dose-response relationship was also found with degree of dipstick proteinuria and incidence of MM.
Conclusion
Adults with decreased renal function indicated either by decreased eGFR or presence of proteinuria are at a higher risk of developing MM compared to those without, and there is a dose-response relationship between the severity of renal impairment and MM incidence.

Keyword

Multiple myeloma; Chronic kidney disease; Glomerular filtration rate; Proteinuria; Risk factors

Figure

  • Fig. 1 Interactive association of estimated glomerular filtrationrate (eGFR) and dipstick proteinuria. (A) Incidence of multiple myeloma. (B) Adjusted hazard ratio of multiple myeloma. Hazard ratio was adjusted for age, sex, income level, body mass index, smoking status, regular exercise, hypertension, diabetes and dyslipidemia. Incidence rate is per 1,000 person-years.

  • Fig. 2 Interactions between smoking/body mass index (BMI) and estimated glomerular filtration rate (eGFR)/dipstick proteinuria. Adjusted hazard ratios for multiple myeloma incidence according to the interactions between eGFR and smoking (A), eGFR and BMI (B), urinary dipstick protein and smoking (C), and urine dipstick protein and BMI (D). p-values for interaction are 0.12 (A), 0.22 (B), 0.22 (C), and 0.28 (D).

  • Fig. 3 Interactions between age/sex and estimated glomerular filtration rate (eGFR)/dipstick proteinuria. Adjusted hazard ratios for multiple myeloma (MM) incidence according to interactions between eGFR and age (A), eGFR and sex (B), urinary dipstick protein and age (C), and urinary dipstick protein and sex (D). p-values for interaction are 0.55 (A), 0.04 (B), 0.22 (C), and 0.54 (D).


Reference

References

1. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003; 121:749–57.
2. Dimopoulos MA, Kastritis E, Rosinol L, Blade J, Ludwig H. Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia. 2008; 22:1485–93.
Article
3. Dimopoulos MA, Terpos E. Renal insufficiency and failure. Hematology Am Soc Hematol Educ Program. 2010; 2010:431–6.
Article
4. Dimopoulos MA, Terpos E, Chanan-Khan A, Leung N, Ludwig H, Jagannath S, et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. J Clin Oncol. 2010; 28:4976–84.
Article
5. Drayson M, Begum G, Basu S, Makkuni S, Dunn J, Barth N, et al. Effects of paraprotein heavy and light chain types and free light chain load on survival in myeloma: an analysis of patients receiving conventional-dose chemotherapy in Medical Research Council UK multiple myeloma trials. Blood. 2006; 108:2013–9.
Article
6. Kastritis E, Zervas K, Symeonidis A, Terpos E, Delimbassi S, Anagnostopoulos N, et al. Improved survival of patients with multiple myeloma after the introduction of novel agents and the applicability of the International Staging System (ISS): an analysis of the Greek Myeloma Study Group (GMSG). Leukemia. 2009; 23:1152–7.
Article
7. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008; 111:2516–20.
Article
8. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975; 36:842–54.
Article
9. Wong G, Hayen A, Chapman JR, Webster AC, Wang JJ, Mitchell P, et al. Association of CKD and cancer risk in older people. J Am Soc Nephrol. 2009; 20:1341–50.
Article
10. Mok Y, Matsushita K, Ballew SH, Sang Y, Jung KJ, Lee S, et al. Kidney function, proteinuria, and cancer incidence: the Korean Heart Study. Am J Kidney Dis. 2017; 70:512–21.
11. Mok Y, Matsushita K, Sang Y, Ballew SH, Grams M, Shin SY, et al. Association of kidney disease measures with cause-specific mortality: the Korean Heart Study. PLoS One. 2016; 11:e0153429.
Article
12. Seong SC, Kim YY, Park SK, Khang YH, Kim HC, Park JH, et al. Cohort profile: the National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS) in Korea. BMJ Open. 2017; 7:e016640.
Article
13. Seong SC, Kim YY, Khang YH, Heon Park J, Kang HJ, Lee H, et al. Data resource profile: the National Health Information Database of the National Health Insurance Service in South Korea. Int J Epidemiol. 2017; 46:799–800.
14. Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort profile: the National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol. 2017; 46:e15.
Article
15. Shin DW, Cho B, Guallar E. Korean National Health Insurance Database. JAMA Intern Med. 2016; 176:138.
Article
16. Kim MK, Han K, Koh ES, Kim HS, Kwon HS, Park YM, et al. Variability in total cholesterol is associated with the risk of end-stage renal disease: a nationwide population-based study. Arterioscler Thromb Vasc Biol. 2017; 37:1963–70.
17. Lamb EJ, Tomson CR, Roderick PJ. Clinical Sciences Reviews Committee of the Association for Clinical Biochemistry. Estimating kidney function in adults using formulae. Ann Clin Biochem. 2005; 42:321–45.
Article
18. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39(2 Suppl 1):S1–266.
19. Benetos A, Petrovic M, Strandberg T. Hypertension management in older and frail older patients. Circ Res. 2019; 124:1045–60.
Article
20. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Melton LJ 3rd. Incidence of multiple myeloma in Olmsted County, Minnesota: trend over 6 decades. Cancer. 2004; 101:2667–74.
Article
21. Phekoo KJ, Schey SA, Richards MA, Bevan DH, Bell S, Gillett D, et al. A population study to define the incidence and survival of multiple myeloma in a National Health Service Region in UK. Br J Haematol. 2004; 127:299–304.
Article
22. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009; 113:5412–7.
Article
23. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15:e538–48.
Article
24. Nasr SH, Valeri AM, Sethi S, Fidler ME, Cornell LD, Gertz MA, et al. Clinicopathologic correlations in multiple myeloma: a case series of 190 patients with kidney biopsies. Am J Kidney Dis. 2012; 59:786–94.
Article
25. Bridoux F, Leung N, Hutchison CA, Touchard G, Sethi S, Fermand JP, et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 2015; 87:698–711.
Article
26. Leung N, Bridoux F, Batuman V, Chaidos A, Cockwell P, D’Agati VD, et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol. 2019; 15:45–59.
Article
27. Leung N, Bridoux F, Hutchison CA, Nasr SH, Cockwell P, Fermand JP, et al. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood. 2012; 120:4292–5.
Article
28. Sanders PW. Mechanisms of light chain injury along the tubular nephron. J Am Soc Nephrol. 2012; 23:1777–81.
Article
29. Hernandez JA, Martinez-Lopez J, Lahuerta JJ. Timing treatment for smoldering myeloma: is earlier better? Expert Rev Hematol. 2019; 12:345–54.
Article
30. Landgren O. Shall we treat smoldering multiple myeloma in the near future? Hematology Am Soc Hematol Educ Program. 2017; 2017:194–204.
Article
31. Lonial S, Jacobus SJ, Weiss M, Kumar S, Orlowski RZ, Kaufman JL, et al. E3A06: Randomized phase III trial of lenalidomide versus observation alone in patients with asymptomatic high-risk smoldering multiple myeloma. J Clin Oncol. 2019; 37:8001.
Article
32. Mateos MV, Hernandez MT, Giraldo P, de la Rubia J, de Arriba F, Lopez Corral L, et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med. 2013; 369:438–47.
Article
33. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420:860–7.
Article
34. Jorgensen L, Heuch I, Jenssen T, Jacobsen BK. Association of albuminuria and cancer incidence. J Am Soc Nephrol. 2008; 19:992–8.
Article
35. Lowrance WT, Ordonez J, Udaltsova N, Russo P, Go AS. CKD and the risk of incident cancer. J Am Soc Nephrol. 2014; 25:2327–34.
Article
36. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP, et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation. 2003; 107:87–92.
Article
37. Klein B, Zhang XG, Jourdan M, Boiron JM, Portier M, Lu ZY, et al. Interleukin-6 is the central tumor growth factor in vitro and in vivo in multiple myeloma. Eur Cytokine Netw. 1990; 1:193–201.
38. Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma. Blood. 1995; 85:863–72.
Article
39. Vajdic CM, McDonald SP, McCredie MR, van Leeuwen MT, Stewart JH, Law M, et al. Cancer incidence before and after kidney transplantation. JAMA. 2006; 296:2823–31.
Article
40. Giacchino F, Alloatti S, Quarello F, Bosticardo GM, Giraudo G, Piccoli G. The immunological state in chronic renal insufficiency. Int J Artif Organs. 1982; 5:237–42.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr