Korean J Pain.  2022 Jul;35(3):261-270. 10.3344/kjp.2022.35.3.261.

The ability of orexin-A to modify pain-induced cyclooxygenase-2 and brain-derived neurotrophic factor expression is associated with its ability to inhibit capsaicin-induced pulpal nociception in rats

Affiliations
  • 1Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
  • 2Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
  • 3Academisch Centrum Tandheelkunde Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract

Background
The rostral ventromedial medulla (RVM) is a critical region for the management of nociception. The RVM is also involved in learning and memory processes due to its relationship with the hippocampus. The purpose of the present study was to investigate the molecular mechanisms behind orexin-A signaling in the RVM and hippocampus’s effects on capsaicin-induced pulpal nociception and cog-nitive impairments in rats.
Methods
Capsaicin (100 g) was applied intradentally to male Wistar rats to induce inflammatory pulpal nociception. Orexin-A and an orexin-1 receptor antagonist (SB-334867) were then microinjected into the RVM. Immunoblotting and immunofluorescence staining were used to check the levels of cyclooxygenase-2 (COX-2) and brain-derived neurotrophic factor (BDNF) in the RVM and hippocampus.
Results
Interdental capsaicin treatment resulted in nociceptive responses as well as a reduction in spatial learning and memory. Additionally, it resulted in decreased BDNF and increased COX-2 expression levels. Orexin-A administration (50 pmol/1 μL/rat) could reverse such molecular changes. SB-334867 microinjection (80 nM/1 μL/rat) suppressed orexin’s effects.
Conclusions
Orexin-A signaling in the RVM and hippocampus modulates capsaicininduced pulpal nociception in male rats by increasing BDNF expression and decreasing COX-2 expression.

Keyword

Brain-Derived Neurotrophic Factor; Capsaicin; Cognitive Dysfunction; Cyclooxygenase 2; Facial Pain; Nociceptin; Orexins; Pulpitis; Rostral Ventromedial Medulla

Figure

  • Fig. 1 Experimental procedure. RVM: rostral ventromedial medulla, MWM: Morris water maze.

  • Fig. 2 Coronal section through the rostral ventromedial medulla (RVM) adapted from the atlas of Paxinos and Watson. 4V: ventricle 4, PY: pyramidal trac.

  • Fig. 3 Effect of intra-rostral ventromedial medulla administration of orexin-A on the total time of nociceptive behaviors in capsaicin-treated rats. The data is shown as mean ± standard error of the mean. Cont: control, Caps: capsaicin, ORX: orexin-A, SB: SB-334867. ***P < 0.001 vs. control or Caps-vehicle group, +++P < 0.001 vs. Caps or artificial cerebrospinal fluid-treated group (aCSF), and ###P < 0.001 vs. (ORX 50 + Caps)-treated group.

  • Fig. 4 Effect of intra-rostral ventromedial medulla orexin-A administration on escape latency (A) and travelled distance (B) in capsaicin-treated rats in the Morris water maze task. The data is shown as mean ± standard error of the mean. Cont: control, Caps: capsaicin, ORX: orexin-A, SB: SB-334867. **P < 0.01 and ***P < 0.001 vs. control group, +P < 0.05 and +++P < 0.001 vs. Caps-treated group, and ###P < 0.001 vs. (ORX 50 + Caps)-treated group.

  • Fig. 5 Effect of intra-rostral ventromedial medulla orexin-1 receptors agonist and antagonist on cyclooxygenase-2 (COX-2) expression in the hippocampus of capsaicin-treated rats. The data is shown as mean ± standard error of the mean. β-actin uses as an internal control. Cont: control, Caps: capsaicin, ORX: orexin-A, SB: SB-334867. *P < 0.05 and ***P < 0.001 vs. control group, +++P < 0.001 vs. Caps-treated group, and #P < 0.05 vs. (ORX 50 + Caps)-treated group.

  • Fig. 6 Effect of intra-rostral ventromedial medulla orexin-1 receptors agonist and antagonist on brain-derived neurotrophic factor (BDNF) expression changes in the hippocampus of capsaicin-treated rats. Data is shown as mean ± standard error of the mean. β-actin is used as an internal control. Cont: control, Caps: capsaicin, ORX: orexin-A, SB: SB-334867. *P < 0.05 vs. control group, +++P < 0.001 vs. Caps-treated group, ###P < 0.001 vs. (ORX 50 + Caps)-treated group.

  • Fig. 7 Immunofluorescence detection of cyclooxygenase-2 (COX-2) in the rostral ventromedial medulla (RVM) of rats. The data is shown as mean ± standard error of the mean. (A) COX-2 staining in RVM cells (green in color), propidium iodide staining to indicate the nucleus of cells (blue in color) in control, capsaicin, capsaicin plus orexin-A (50 pmol/1 μL/rat) and SB-334867 (80 nmol/1 μL/rat) treated groups. (B) Comparison of the number of COX-2 positively stained cells in the RVM sections of the experimental groups. Cont: control, Caps: capsaicin, ORX: orexin-A, SB: SB-334867, DAPI: 4′,6-diamidino-2-phenylindole. ***P < 0.01 vs. control group, +++P < 0.001 vs. Caps-treated group, ##P < 0.01 vs. (ORX 50 + Caps)-treated group.

  • Fig. 8 Immunofluorescence detection of brain-derived neurotrophic factor (BDNF) in the rostral ventromedial medulla (RVM) of rats. The data is shown as mean ± standard error of the mean. (A) BDNF staining in RVM cells (green in color), propidium iodide was stained to indicate the cell’s nucleus (blue in color) in control, capsaicin, capsaicin plus orexin-A (50 pmol/1 μL/rat) and SB-334867 (80 nmol/1 μL/rat) treated groups. (B) Comparison of the number of BDNF-positive stained cells in the RVM sections of the experimental groups. Cont: control, Caps: capsaicin, ORX: orexin-A, SB: SB-334867, DAPI: 4′,6-diamidino-2-phenylindole. **P < 0.01 vs. the control group and +P < 0.05 vs. the Caps-treated group.


Reference

1. Takemura M, Sugiyo S, Moritani M, Kobayashi M, Yonehara N. 2006; Mechanisms of orofacial pain control in the central nervous system. Arch Histol Cytol. 69:79–100. DOI: 10.1679/aohc.69.79. PMID: 16819148.
Article
2. Heinricher MM, Tavares I, Leith JL, Lumb BM. 2009; Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 60:214–25. DOI: 10.1016/j.brainresrev.2008.12.009. PMID: 19146877. PMCID: PMC2894733.
Article
3. Porreca F, Ossipov MH, Gebhart GF. 2002; Chronic pain and medullary descending facilitation. Trends Neurosci. 25:319–25. DOI: 10.1016/S0166-2236(02)02157-4. PMID: 12086751.
Article
4. Liu MG, Chen J. 2009; Roles of the hippocampal formation in pain information processing. Neurosci Bull. 25:237–66. DOI: 10.1007/s12264-009-0905-4. PMID: 19784080. PMCID: PMC5552607.
Article
5. Voisin T, Rouet-Benzineb P, Reuter N, Laburthe M. 2003; Orexins and their receptors: structural aspects and role in peripheral tissues. Cell Mol Life Sci. 60:72–87. DOI: 10.1007/s000180300005. PMID: 12613659.
Article
6. DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV. 2002; The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav. 71:469–80. DOI: 10.1016/S0091-3057(01)00689-X. PMID: 11830181.
7. Lungwitz EA, Molosh A, Johnson PL, Harvey BP, Dirks RC, Dietrich A, et al. 2012; Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol Behav. 107:726–32. DOI: 10.1016/j.physbeh.2012.05.019. PMID: 22652097. PMCID: PMC3482273.
Article
8. Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. 2014; Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci. 8:36. DOI: 10.3389/fnins.2014.00036. PMID: 24616658. PMCID: PMC3934415.
Article
9. Darwinkel A, Stanić D, Booth LC, May CN, Lawrence AJ, Yao ST. 2014; Distribution of orexin-1 receptor-green fluorescent protein- (OX1-GFP) expressing neurons in the mouse brain stem and pons: co-localization with tyrosine hydroxylase and neuronal nitric oxide synthase. Neuroscience. 278:253–64. DOI: 10.1016/j.neuroscience.2014.08.027. PMID: 25168728.
Article
10. Raoof M, Esmaeili-Mahani S, Nourzadeh M, Raoof R, Abbasnejad M, Amirkhosravi L, et al. 2015; Noxious stimulation of the rat tooth pulp may impair learning and memory through the induction of hippocampal apoptosis. J Oral Facial Pain Headache. 29:390–7. DOI: 10.11607/ofph.1452. PMID: 26485387.
Article
11. Chuang YC, Yoshimura N, Huang CC, Wu M, Chiang PH, Chancellor MB. 2008; Intraprostatic botulinum toxin a injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat. J Urol. 180:742–8. DOI: 10.1016/j.juro.2007.07.120. PMID: 18554636.
Article
12. Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, et al. 2004; Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 19:3375–81. DOI: 10.1111/j.0953-816X.2004.03441.x. PMID: 15217394.
Article
13. Rahbar I, Abbasnejad M, Haghani J, Raoof M, Kooshki R, Esmaeili-Mahani S. 2019; The effect of central administration of alpha-pinene on capsaicin-induced dental pulp nociception. Int Endod J. 52:307–17. DOI: 10.1111/iej.13006. PMID: 30152861.
Article
14. Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, et al. 2008; BDNF as a pain modulator. Prog Neurobiol. 85:297–317. DOI: 10.1016/j.pneurobio.2008.04.004. PMID: 18514997.
Article
15. Pezet S, Malcangio M, McMahon SB. 2002; BDNF: a neuromodulator in nociceptive pathways? Brain Res Brain Res Rev. 40:240–9. DOI: 10.1016/S0165-0173(02)00206-0. PMID: 12589922.
Article
16. Bekinschtein P, Cammarota M, Medina JH. 2014; BDNF and memory processing. Neuropharmacology. 76 Pt C:677–83. DOI: 10.1016/j.neuropharm.2013.04.024. PMID: 23688925.
Article
17. Webster MJ, Herman MM, Kleinman JE, Shannon Weickert C. 2006; BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns. 6:941–51. DOI: 10.1016/j.modgep.2006.03.009. PMID: 16713371.
Article
18. Raoof M, Ashrafganjoui E, Kooshki R, Abbasnejad M, Haghani J, Amanpour S, et al. 2018; Effect of chronic stress on capsaicin-induced dental nociception in a model of pulpitis in rats. Arch Oral Biol. 85:154–9. DOI: 10.1016/j.archoralbio.2017.10.012. PMID: 29073563.
Article
19. Lucas SM, Rothwell NJ, Gibson RM. 2006; The role of inflammation in CNS injury and disease. Br J Pharmacol. 147(Suppl 1):S232–40. DOI: 10.1038/sj.bjp.0706400. PMID: 16402109. PMCID: PMC1760754.
Article
20. Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C. 2006; Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J Immunol. 177:1879–85. DOI: 10.4049/jimmunol.177.3.1879. PMID: 16849500.
Article
21. Kooshki R, Abbasnejad M, Esmaeili Mahani S, Raoof M, Moeini Aghtaei MM, Dabiri S. 2018; Orexin-A inhibits capsaicin-induced changes in cyclooxygenase-2 and brain-derived neurotrophic factor expression in trigeminal nucleus caudalis of rats. Korean J Pain. 31:174–82. DOI: 10.3344/kjp.2018.31.3.174. PMID: 30013731. PMCID: PMC6037813.
Article
22. Ahn DK, Choi HS, Yeo SP, Woo YW, Lee MK, Yang GY, et al. 2007; Blockade of central cyclooxygenase (COX) pathways enhances the cannabinoid-induced antinociceptive effects on inflammatory temporomandibular joint (TMJ) nociception. Pain. 132:23–32. DOI: 10.1016/j.pain.2007.01.015. PMID: 17321048.
Article
23. Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, Dirnagl U, et al. 2011; IL-1β stimulates COX-2 dependent PGE₂ synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One. 6:e1736. DOI: 10.1371/journal.pone.0017360. PMID: 21394197. PMCID: PMC3048859. PMID: ab39d129d74d4cf2b47027dcaaad6110.
24. Zhou Y, Long H, Ye N, Liao L, Yang X, Jian F, et al. 2016; The effect of capsaicin on expression patterns of CGRP in trigeminal ganglion and trigeminal nucleus caudalis following experimental tooth movement in rats. J Appl Oral Sci. 24:597–606. DOI: 10.1590/1678-775720160150. PMID: 28076465. PMCID: PMC5161258.
Article
25. Hay C, de Belleroche J. 1997; Carrageenan-induced hyperalgesia is associated with increased cyclo-oxygenase-2 expression in spinal cord. Neuroreport. 8:1249–51. DOI: 10.1097/00001756-199703240-00038. PMID: 9175123.
Article
26. Carlson JD, Maire JJ, Martenson ME, Heinricher MM. 2007; Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci. 27:13222–31. DOI: 10.1523/JNEUROSCI.3715-07.2007. PMID: 18045916. PMCID: PMC6673414.
Article
27. Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F. 2010; Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain. 14:120.e1–9. DOI: 10.1016/j.ejpain.2009.04.006. PMID: 19443247. PMCID: PMC2914578.
Article
28. Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M. 2016; The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats. Physiol Behav. 157:20–7. DOI: 10.1016/j.physbeh.2016.01.031. PMID: 26821188.
Article
29. Azhdari-Zarmehri H, Semnanian S, Fathollahi Y, Pakdel FG. 2014; Tail flick modification of orexin-a induced changes of electrophysiological parameters in the rostral ventromedial medulla. Cell J. 16:131–40. PMID: 24567942. PMCID: PMC4072083.
30. Ogawa Y, Irukayama-Tomobe Y, Murakoshi N, Kiyama M, Ishikawa Y, Hosokawa N, et al. 2016; Peripherally administered orexin improves survival of mice with endotoxin shock. Elife. 5:e21055. DOI: 10.7554/eLife.21055. PMID: 28035899. PMCID: PMC5245965. PMID: b97c3e7543c743b6abdc7a2ccd886b22.
Article
31. Messal N, Fernandez N, Dayot S, Gratio V, Nicole P, Prochasson C, et al. 2018; Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A. Biochim Biophys Acta Mol Basis Dis. 1864:3618–28. DOI: 10.1016/j.bbadis.2018.08.023. PMID: 30251681.
Article
32. Becquet L, Abad C, Leclercq M, Miel C, Jean L, Riou G, et al. 2019; Systemic administration of orexin A ameliorates established experimental autoimmune encephalomyelitis by diminishing neuroinflammation. J Neuroinflammation. 16:64. DOI: 10.1186/s12974-019-1447-y. PMID: 30894198. PMCID: PMC6425555. PMID: 69e7f6833b604226b92795a7fa86ab95.
Article
33. Raoof R, Esmaeili-Mahani S, Abbasnejad M, Raoof M, Sheibani V, Kooshki R, et al. 2015; Changes in hippocampal orexin 1 receptor expression involved in tooth pain-induced learning and memory impairment in rats. Neuropeptides. 50:9–16. DOI: 10.1016/j.npep.2015.03.002. PMID: 25817882.
Article
34. Buldyrev I, Tanner NM, Hsieh HY, Dodd EG, Nguyen LT, Balkowiec A. 2006; Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons. J Neurochem. 99:1338–50. DOI: 10.1111/j.1471-4159.2006.04161.x. PMID: 17064360. PMCID: PMC2440676.
Article
35. Trang T, Beggs S, Salter MW. 2011; Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol. 7:99–108. DOI: 10.1017/S1740925X12000087. PMID: 22613083. PMCID: PMC3748035.
Article
36. Latremoliere A, Woolf CJ. 2009; Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 10:895–926. DOI: 10.1016/j.jpain.2009.06.012. PMID: 19712899. PMCID: PMC2750819.
Article
37. Duric V, McCarson KE. 2006; Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain. 7:544–55. DOI: 10.1016/j.jpain.2006.01.458. PMID: 16885011.
Article
38. Aubdool AA, Kodji X, Abdul-Kader N, Heads R, Fernandes ES, Bevan S, et al. 2016; TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO. Br J Pharmacol. 173:2419–33. DOI: 10.1111/bph.13519. PMID: 27189253. PMCID: PMC4945766.
Article
39. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant'Anna M, Cunha ÂB, Post RM. 2008; Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Braz J Psychiatry. 30:243–5. DOI: 10.1590/S1516-44462008000300011. PMID: 18833425.
Article
40. Akbari E, Naghdi N, Motamedi F. 2007; The selective orexin 1 receptor antagonist SB-334867-A impairs acquisition and consolidation but not retrieval of spatial memory in Morris water maze. Peptides. 28:650–6. DOI: 10.1016/j.peptides.2006.11.002. PMID: 17161886.
Article
41. Choi YS, Cho HY, Hoyt KR, Naegele JR, Obrietan K. 2008; IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia. 56:791–800. DOI: 10.1002/glia.20653. PMID: 18338791. PMCID: PMC4152854.
Article
42. Lee S, Yang M, Kim J, Son Y, Kim J, Kang S, et al. 2016; Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice. Brain Res Bull. 121:48–58. DOI: 10.1016/j.brainresbull.2016.01.002. PMID: 26772626. PMCID: PMC4783253.
Article
43. Veyrac A, Gros A, Bruel-Jungerman E, Rochefort C, Kleine Borgmann FB, Jessberger S, et al. 2013; Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc Natl Acad Sci U S A. 110:7062–7. DOI: 10.1073/pnas.1220558110. PMID: 23569253. PMCID: PMC3637756.
44. Meyer-Tuve A, Malcangio M, Ebersberger A, Mazario J, Schaible HG. 2001; Effect of brain-derived neurotrophic factor on the release of substance P from rat spinal cord. Neuroreport. 12:21–4. DOI: 10.1097/00001756-200101220-00012. PMID: 11201084.
Article
45. Yang L, Zou B, Xiong X, Pascual C, Xie J, Malik A, et al. 2013; Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci. 33:5275–84. DOI: 10.1523/JNEUROSCI.3200-12.2013. PMID: 23516292. PMCID: PMC3640412.
Article
46. Marmigère F, Givalois L, Rage F, Arancibia S, Tapia-Arancibia L. 2003; Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus. 13:646–55. DOI: 10.1002/hipo.10109. PMID: 12921353.
Article
47. Wang H, Ye M, Yu L, Wang J, Guo Y, Lei W, et al. 2015; Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration. Behav Brain Funct. 11:8. DOI: 10.1186/s12993-015-0054-z. PMID: 25888969. PMCID: PMC4336726.
Article
48. Arrigo A, Mormina E, Calamuneri A, Gaeta M, Marino S, Milardi D, et al. 2017; Amygdalar and hippocampal connections with brainstem and spinal cord: a diffusion MRI study in human brain. Neuroscience. 343:346–54. DOI: 10.1016/j.neuroscience.2016.12.016. PMID: 28003162.
Article
49. Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M. 2018; The effect of CA1 administration of orexin-A on hippocampal expression of COX-2 and BDNF in a rat model of orofacial pain. Arq Neuropsiquiatr. 76:603–8. DOI: 10.1590/0004-282x20180099. PMID: 30365624.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr