Korean J Sports Med.  2022 Jun;40(2):67-85. 10.5763/kjsm.2022.40.2.67.

The Mechanisms of Anabolic Steroids, Selective Androgen Receptor Modulators and Myostatin Inhibitors

Affiliations
  • 1Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
  • 2Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA

Abstract

In the clinical setting, anabolic agents serve to ameliorate muscle- and bone-wasting diseases. However, many of these anabolic agents are also used by bodybuilders to surpass natural limits of body composition as performanceenhancing drugs (PEDs). The first generation of PEDs comprises testosterone-derived anabolic-androgenic steroids (AAS) which have demonstrated significant myotropic effects. However, AAS lack optimal tissue-selectively and thus, are prone to numerous adverse health consequences. Hence, a newer generation of PEDs, selective androgen receptor modulators (SARMs), was developed with the goal of achieving superior tissue-selectivity (i.e., exerting anabolic effects only in muscle and bone tissue, while minimally affecting other body systems). In general, AAS and SARMs enhance muscle growth primarily through androgen receptor (AR) agonism in target tissues. Despite multiple attempts, no single AAS nor SARM to date is completely risk free. As such, a significant portion of research efforts has been dedicated to manipulating anabolic pathways beyond the AR. Another class of PEDs, myostatin inhibitors, have shown to cause drastic muscle anabolism across multiple species by inhibiting myostatin, the primary deterrent to continuous muscle growth. The myostatin inhibitor, YK-11, blocks myostatin by upregulating its antagonist, follistatin. This effect appears to be mediated through the AR, suggesting a novel and promising gene-selective approach to engineering AR ligands that isolate benefits from risks. At any rate, the exact mechanisms by which these PEDs function is not well understood. Further pioneering regarding these topics is encouraged as it appears that the innovation of a truly tissue-selective anabolic agent is within reach.

Keyword

Steroids; Performance-enhancing substances; Resistance training; Androgen receptor agonists; Myostatin

Figure

  • Fig. 1 Anabolic-androgenic steroid (AAS) signaling in myogenesis. AAS exerts many of their effects through androgen receptor (AR) agonism and the transcription/translation of AR target genes. AAS can inhibit muscle protein breakdown (MPB) by antagonizing the glucocorticoid receptor (GR) and also via AR agonism which leads to FOXO and glycogen synthase kinase 3-β (GSK3-β) inhibition, as well as calcium mobilization which inhibits myostatin through calcium-dependent pathways. Inhibition of GSK3-β promotes glycogen synthesis. Combined with nitric oxide release and vasodilation, glycogen synthesis enhances skeletal muscle perfusion during exercise, contributing to efficient training. Aggression and augmented motor unit recruit are some effects of androgens on the nervous system and these effects further promote efficient training by facilitating heavy lifting and training intensity. In bone marrow, androgens promote erythropoiesis, leading to an increased hematocrit that enhances aerobic endurance. Upregulation of myocyte enhancer factor 2 (MEF2)-related genes and ornithine decarboxylase 1 (Odc1), as well as insulin-like growth factor 1 (IGF-1) and mammalian target of rapamycin (mTOR), enhance satellite cell recruitment in numerous ways (i.e., delayed proliferation period, enhanced fusion index, and accompanying the necessary muscle protein synthesis [MPS]). Some AAS serve as substrates for aromatase and/or 5-α-reductase (5AR) and possess additional pathways that may augment or diminish their overall anabolic effects. In general, aromatizable AAS can convert into estrogens and agonize the estrogen receptor (ER) which further supports IGF-1 and arachidonic acid (AA) upregulation. IGF-1 is a major activator of mTOR, while AA optimizes acute inflammation signaling and increases training efficiency. AAS that are 5AR-reductable have differing effects depending on the generated 5AR-modified AAS. For instance, testosterone is reduced into a more potent androgen, while nandrolone is reduced into a weaker androgen. Thus, the biotransformation by 5AR/aromatase and the bioactivity of the resulting steroid hormone are specific to the AAS and tissue. Some relationships and signaling pathways are not shown for the purpose of simplicity.

  • Fig. 2 Potential mechanism of selective androgen receptor modulator (SARM) tissue-selectivity based on the coactivator hypothesis. As shown in box C and D, testosterone exerts approximately equal androgen receptor (AR) agonism in both androgenic tissue (i.e., prostate) and anabolic tissue (i.e., skeletal muscle tissue). This likely results from a similar coregulator recruitment and/or ligand-AR complex conformation in both types of tissues. On the other hand, SARMs appear to have partial agonist/weak antagonist activity on the AR in androgenic tissues as a result of recruiting more corepressors than coactivators compared to testosterone/dihydrotestosterone (DHT) (compare boxes A and C). In anabolic tissues, SARMs are shown to preferentially recruit coactivators over corepressors and exert full AR agonist activity, often with a greater magnitude than anabolic-androgenic steroid in the same tissue (compare boxes B and D). HSP: heat shock proteins, 5AR: 5-α-reductase.


Cited by  1 articles

저항성 운동과 근골격 성장의 생리
Jeremy Park, Vera Mcllvain, Jared Rosenberg, Lorin Donovan, Priya Desai, Joon Young Kim
Korean J Sports Med. 2022;40(3):151-169.    doi: 10.5763/kjsm.2022.40.3.151.


Reference

1. Aragon AA, Schoenfeld BJ, Wildman R, et al. 2017; International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 14:16. DOI: 10.1186/s12970-017-0174-y. PMID: 28630601. PMCID: PMC5470183.
Article
2. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. 2015; Satellite cells and skeletal muscle regeneration. Compr Physiol. 5:1027–59. DOI: 10.1002/cphy.c140068. PMID: 26140708.
Article
3. Kraemer WJ, Ratamess NA. 2005; Hormonal responses and adaptations to resistance exercise and training. Sports Med. 35:339–61. DOI: 10.2165/00007256-200535040-00004. PMID: 15831061.
Article
4. Schoenfeld BJ. 2010; The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 24:2857–72. DOI: 10.1519/JSC.0b013e3181e840f3. PMID: 20847704.
Article
5. Elliott B, Renshaw D, Getting S, Mackenzie R. 2012; The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf). 205:324–40. DOI: 10.1111/j.1748-1716.2012.02423.x. PMID: 22340904.
Article
6. Kouri EM, Pope HG Jr, Katz DL, Oliva P. 1995; Fat-free mass index in users and nonusers of anabolic-androgenic steroids. Clin J Sport Med. 5:223–8. DOI: 10.1097/00042752-199510000-00003. PMID: 7496846.
Article
7. Shahidi NT. 2001; A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Ther. 23:1355–90. DOI: 10.1016/S0149-2918(01)80114-4. PMID: 11589254.
Article
8. Bonnecaze AK, O'Connor T, Burns CA. 2021; Harm reduction in male patients actively using anabolic androgenic steroids (AAS) and performance-enhancing drugs (PEDs): a review. J Gen Intern Med. 36:2055–64. DOI: 10.1007/s11606-021-06751-3. PMID: 33948794. PMCID: PMC8298654.
Article
9. Rahman F, Christian HC. 2007; Non-classical actions of testosterone: an update. Trends Endocrinol Metab. 18:371–8. DOI: 10.1016/j.tem.2007.09.004. PMID: 17997105.
Article
10. Lipsett MB. 1975; Production of testosterone by prostate and other peripheral tissues in man. Vitam Horm. 33:209–21. DOI: 10.1016/S0083-6729(08)60957-7. PMID: 180673.
Article
11. Stocco DM, Clark BJ. 1996; Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 17:221–44. DOI: 10.1210/edrv-17-3-221. PMID: 8771357.
Article
12. Midzak AS, Chen H, Papadopoulos V, Zirkin BR. 2009; Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol Cell Endocrinol. 299:23–31. DOI: 10.1016/j.mce.2008.07.016. PMID: 18761053.
Article
13. Pastuszak AW, Gittelman M, Tursi JP, Jaffe JS, Schofield D, Miner MM. 2022; Pharmacokinetics of testosterone therapies in relation to diurnal variation of serum testosterone levels as men age. Andrology. 10:209–22. DOI: 10.1111/andr.13108. PMID: 34510812.
Article
14. Llewellyn W. William Llewellyn's anabolics. Molecular Nutrition LLC;Jupiter (FL): 11th ed. 2017.
15. Mottram DR, George AJ. 2000; Anabolic steroids. Baillieres Best Pract Res Clin Endocrinol Metab. 14:55–69. DOI: 10.1053/beem.2000.0053. PMID: 10932810.
Article
16. Rahnema CD, Lipshultz LI, Crosnoe LE, Kovac JR, Kim ED. 2014; Anabolic steroid-induced hypogonadism: diagnosis and treatment. Fertil Steril. 101:1271–9. DOI: 10.1016/j.fertnstert.2014.02.002. PMID: 24636400.
Article
17. Pan MM, Kovac JR. 2016; Beyond testosterone cypionate: evidence behind the use of nandrolone in male health and wellness. Transl Androl Urol. 5:213–9. DOI: 10.21037/tau.2016.03.03. PMID: 27141449. PMCID: PMC4837307.
Article
18. Basualto-Alarcón C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. 2013; Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc. 45:1712–20. DOI: 10.1249/MSS.0b013e31828cf5f3. PMID: 23470307.
Article
19. Yarrow JF, McCoy SC, Borst SE. 2010; Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): a potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids. 75:377–89. DOI: 10.1016/j.steroids.2010.01.019. PMID: 20138077.
Article
20. Haren MT, Siddiqui AM, Armbrecht HJ, et al. 2011; Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 34:55–68. DOI: 10.1111/j.1365-2605.2010.01061.x. PMID: 20403060.
Article
21. Deane CS, Hughes DC, Sculthorpe N, Lewis MP, Stewart CE, Sharples AP. 2013; Impaired hypertrophy in myoblasts is improved with testosterone administration. J Steroid Biochem Mol Biol. 138:152–61. DOI: 10.1016/j.jsbmb.2013.05.005. PMID: 23714396.
Article
22. Braga M, Bhasin S, Jasuja R, Pervin S, Singh R. 2012; Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action. Mol Cell Endocrinol. 350:39–52. DOI: 10.1016/j.mce.2011.11.019. PMID: 22138414. PMCID: PMC3264813.
Article
23. Serra C, Bhasin S, Tangherlini F, et al. 2011; The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology. 152:193–206. DOI: 10.1210/en.2010-0802. PMID: 21084444. PMCID: PMC3033058.
Article
24. Wu Y, Bauman WA, Blitzer RD, Cardozo C. 2010; Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochem Biophys Res Commun. 400:679–83. DOI: 10.1016/j.bbrc.2010.08.127. PMID: 20816664.
Article
25. Dubois V, Laurent MR, Sinnesael M, et al. 2014; A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. 28:2979–94. DOI: 10.1096/fj.14-249748. PMID: 24671706.
Article
26. MacKrell JG, Yaden BC, Bullock H, et al. 2015; Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration. Nucl Recept Signal. 13:e005. DOI: 10.1621/nrs.13005. PMID: 26457071. PMCID: PMC4599140.
Article
27. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S. 2004; Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab. 89:5245–55. DOI: 10.1210/jc.2004-0084. PMID: 15472231.
Article
28. Lucas-Herald AK, Alves-Lopes R, Montezano AC, Ahmed SF, Touyz RM. 2017; Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clin Sci (Lond). 131:1405–18. DOI: 10.1042/CS20170090. PMID: 28645930. PMCID: PMC5736922.
Article
29. O'Malley BW, Tsai SY, Bagchi M, Weigel NL, Schrader WT, Tsai MJ. 1991; Molecular mechanism of action of a steroid hormone receptor. Recent Prog Horm Res. 47:1–24. DOI: 10.1016/B978-0-12-571147-0.50005-6. PMID: 1745818.
30. Wärnmark A, Treuter E, Wright AP, Gustafsson JA. 2003; Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 17:1901–9. DOI: 10.1210/me.2002-0384. PMID: 12893880.
Article
31. Skinner MK. Encyclopedia of reproduction. Elsevier, Academic Press;Amsterdam, Boston:
32. Narayanan R, Coss CC, Dalton JT. 2018; Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol. 465:134–42. DOI: 10.1016/j.mce.2017.06.013. PMID: 28624515. PMCID: PMC5896569.
Article
33. Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG. 1999; The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol. 19:8383–92. DOI: 10.1128/MCB.19.12.8383. PMID: 10567563. PMCID: PMC84931.
Article
34. Singh R, Bhasin S, Braga M, et al. 2009; Regulation of myogenic differentiation by androgens: cross talk between androgen receptor/beta-catenin and follistatin/transforming growth factor-beta signaling pathways. Endocrinology. 150:1259–68. DOI: 10.1210/en.2008-0858. PMID: 18948405. PMCID: PMC2654730.
35. Parr MK, Müller-Schöll A. 2018; Pharmacology of doping agents— mechanisms promoting muscle hypertrophy. AIMS Mol Sci. 5:145–55. DOI: 10.3934/molsci.2018.2.131.
36. Rana K, Lee NK, Zajac JD, MacLean HE. 2014; Expression of androgen receptor target genes in skeletal muscle. Asian J Androl. 16:675–83. DOI: 10.4103/1008-682X.122861. PMID: 24713826. PMCID: PMC4215656.
Article
37. Wyce A, Bai Y, Nagpal S, Thompson CC. 2010; Research resource: the androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol. 24:1665–74. DOI: 10.1210/me.2010-0138. PMID: 20610535. PMCID: PMC5417449.
Article
38. Liu N, Nelson BR, Bezprozvannaya S, et al. 2014; Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A. 111:4109–14. DOI: 10.1073/pnas.1401732111. PMID: 24591619. PMCID: PMC3964114.
Article
39. Lee NK, Skinner JP, Zajac JD, MacLean HE. 2011; Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am J Physiol Endocrinol Metab. 301:E172–9. DOI: 10.1152/ajpendo.00094.2011. PMID: 21505150.
Article
40. Saartok T, Dahlberg E, Gustafsson JA. 1984; Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology. 114:2100–6. DOI: 10.1210/endo-114-6-2100. PMID: 6539197.
Article
41. Wu FC. 1997; Endocrine aspects of anabolic steroids. Clin Chem. 43:1289–92. DOI: 10.1093/clinchem/43.7.1289. PMID: 9216476.
Article
42. Hartgens F, Kuipers H. 2004; Effects of androgenic-anabolic steroids in athletes. Sports Med. 34:513–54. DOI: 10.2165/00007256-200434080-00003. PMID: 15248788.
Article
43. El-Maouche D, Dobs A. Legato MJ, editor. Chapter 60. Testosterone replacement therapy in men and women. Principles of gender-specific medicine. Academic Press;San Diego: 2nd ed. 2010. p. 737–60. DOI: 10.1016/B978-0-12-374271-1.00060-5.
44. Sheffield-Moore M. 2000; Androgens and the control of skeletal muscle protein synthesis. Ann Med. 32:181–6. DOI: 10.3109/07853890008998825. PMID: 10821325.
Article
45. Foryst-Ludwig A, Kintscher U. 2010; Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol. 122:74–81. DOI: 10.1016/j.jsbmb.2010.06.012. PMID: 20599505.
Article
46. Dayton WR, White ME. 2014; Meat Science and Muscle Biology Symposium: role of satellite cells in anabolic steroid-induced muscle growth in feedlot steers. J Anim Sci. 92:30–8. DOI: 10.2527/jas.2013-7077. PMID: 24166993.
47. Kahlert S, Grohé C, Karas RH, Löbbert K, Neyses L, Vetter H. 1997; Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun. 232:373–8. DOI: 10.1006/bbrc.1997.6223. PMID: 9125184.
Article
48. Balgoma D, Zelleroth S, Grönbladh A, Hallberg M, Pettersson C, Hedeland M. 2020; Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics. 16:12. DOI: 10.1007/s11306-019-1632-0. PMID: 31925559. PMCID: PMC6954146.
Article
49. Labrie F, Luu-The V, Labrie C, Simard J. 2001; DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 22:185–212. DOI: 10.1006/frne.2001.0216. PMID: 11456468.
Article
50. Markworth JF, Cameron-Smith D. 2013; Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway. Am J Physiol Cell Physiol. 304:C56–67. DOI: 10.1152/ajpcell.00038.2012. PMID: 23076795.
Article
51. Hiipakka RA, Liao S. 1998; Molecular mechanism of androgen action. Trends Endocrinol Metab. 9:317–24. DOI: 10.1016/S1043-2760(98)00081-2. PMID: 18406296.
Article
52. van Amsterdam J, Opperhuizen A, Hartgens F. 2010; Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol. 57:117–23. DOI: 10.1016/j.yrtph.2010.02.001. PMID: 20153798.
Article
53. Kicman AT. 2008; Pharmacology of anabolic steroids. Br J Pharmacol. 154:502–21. DOI: 10.1038/bjp.2008.165. PMID: 18500378. PMCID: PMC2439524.
Article
54. Suvitha A, Souissi M, Sahara R, Venkataramanan NS. 2019; Deciphering the nature of interactions in nandrolone/testosterone encapsulated cucurbituril complexes : a computational study. J Incl Phenom Macrocycl Chem. 93:183–92. DOI: 10.1007/s10847-018-0869-y.
Article
55. Pomara C, Barone R, Marino Gammazza A, et al. 2016; Effects of nandrolone stimulation on testosterone biosynthesis in Leydig cells. J Cell Physiol. 231:1385–91. DOI: 10.1002/jcp.25272. PMID: 26626779. PMCID: PMC5064776.
Article
56. Chang MC, Hafez ES, Merrill A, Pincus G, Zarrow MX. 1956; Studies of the biological activity of certain 19-nor steroids in female animals. Endocrinology. 59:695–707. DOI: 10.1210/endo-59-6-695. PMID: 13375596.
Article
57. Smith GI, Mittendorfer B. 2016; Sexual dimorphism in skeletal muscle protein turnover. J Appl Physiol (1985). 120:674–82. DOI: 10.1152/japplphysiol.00625.2015. PMID: 26702024. PMCID: PMC4796180.
Article
58. Wang HQ, Takebayashi K, Tsuchida K, Nishimura M, Noda Y. 2003; Follistatin-related gene (FLRG) expression in human endometrium: sex steroid hormones regulate the expression of FLRG in cultured human endometrial stromal cells. J Clin Endocrinol Metab. 88:4432–9. DOI: 10.1210/jc.2002-021758. PMID: 12970321.
Article
59. Krasowski MD, Drees D, Morris CS, Maakestad J, Blau JL, Ekins S. 2014; Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction. BMC Clin Pathol. 14:33. DOI: 10.1186/1472-6890-14-33. PMID: 25071417. PMCID: PMC4112981.
Article
60. Roberts AC, McClure RD, Weiner RI, Brooks GA. 1993; Overtraining affects male reproductive status. Fertil Steril. 60:686–92. DOI: 10.1016/S0015-0282(16)56223-2. PMID: 8405526.
Article
61. Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A. 2007; The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Mol Pharmacol. 71:473–82. DOI: 10.1124/mol.106.031112. PMID: 17105867.
Article
62. Houtman CJ, Sterk SS, van de Heijning MP, et al. 2009; Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays. Anal Chim Acta. 637:247–58. DOI: 10.1016/j.aca.2008.09.037. PMID: 19286037.
Article
63. Hershberger LG, Shipley EG, Meyer RK. 1953; Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med. 83:175–80. DOI: 10.3181/00379727-83-20301. PMID: 13064212.
Article
64. Kam PC, Yarrow M. 2005; Anabolic steroid abuse: physiological and anaesthetic considerations. Anaesthesia. 60:685–92. DOI: 10.1111/j.1365-2044.2005.04218.x. PMID: 15960720.
Article
65. National Center for Biotechnology Information (NCBI). 2022. Pub-Chem compound summary for CID 5281034, Oxymetholone [Internet]. NCBI;Bethesda, MD: Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Oxymetholone. cited 2022 May 16.
66. Gao W, Dalton JT. 2007; Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discov Today. 12:241–8. DOI: 10.1016/j.drudis.2007.01.003. PMID: 17331889. PMCID: PMC2072879.
Article
67. Naafs MA. Selective androgen receptor modulators (SARMs): a mini-review. DOI: 10.32474/OAJRSD.2018.01.000103. 2018; 1:20–6.
Article
68. Bhasin S, Jasuja R. 2009; Selective androgen receptor modulators as function promoting therapies. Curr Opin Clin Nutr Metab Care. 12:232–40. DOI: 10.1097/MCO.0b013e32832a3d79. PMID: 19357508. PMCID: PMC2907129.
Article
69. Zilbermint MF, Dobs AS. 2009; Nonsteroidal selective androgen receptor modulator Ostarine in cancer cachexia. Future Oncol. 5:1211–20. DOI: 10.2217/fon.09.106. PMID: 19852734.
70. Basaria S, Collins L, Dillon EL, et al. 2013; The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci. 68:87–95. DOI: 10.1093/gerona/gls078. PMID: 22459616. PMCID: PMC4111291.
Article
71. Sieck GC, Mantilla CB. Miller VM, Hay M, editors. Influence of sex hormones on the neuromuscular junction. Principles of sex-based differences in physiology. Elsevier;Amsterdam, Boston, Heidelberg: 2004. p. 183–94. DOI: 10.1016/S1569-2558(03)34013-5.
Article
72. Cunningham RL, Giuffrida A, Roberts JL. 2009; Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase Cdelta. Endocrinology. 150:5539–48. DOI: 10.1210/en.2009-0640. PMID: 19837873. PMCID: PMC2795716.
Article
73. Evans PJ, Lynch RM. 2003; Insulin as a drug of abuse in body building. Br J Sports Med. 37:356–7. DOI: 10.1136/bjsm.37.4.356. PMID: 12893725. PMCID: PMC1724679.
Article
74. Graham MR, Evans P, Davies B, Baker JS. 2008; AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects. Ther Clin Risk Manag. 4:587–97. DOI: 10.2147/TCRM.S2495. PMID: 18827854. PMCID: PMC2500251.
Article
75. Mohler ML, Bohl CE, Jones A, et al. 2009; Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem. 52:3597–617. DOI: 10.1021/jm900280m. PMID: 19432422.
Article
76. Patel K, Amthor H. 2005; The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord. 15:117–26. DOI: 10.1016/j.nmd.2004.10.018. PMID: 15694133.
Article
77. Amthor H, Macharia R, Navarrete R, et al. 2007; Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A. 104:1835–40. DOI: 10.1073/pnas.0604893104. PMID: 17267614. PMCID: PMC1794294.
Article
78. Mosler S, Geisler S, Hengevoss J, et al. 2013; Modulation of follistatin and myostatin propeptide by anabolic steroids and gender. Int J Sports Med. 34:567–72. DOI: 10.1055/s-0032-1312585. PMID: 23559411.
Article
79. Dalbo VJ, Roberts MD, Mobley CB, et al. 2017; Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia. 49:10.1111/and.12622. DOI: 10.1111/and.12622. PMID: 27246614.
Article
80. Rahimov F, King OD, Warsing LC, et al. 2011; Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor. Physiol Genomics. 43:398–407. DOI: 10.1152/physiolgenomics.00223.2010. PMID: 21266502. PMCID: PMC3092338.
Article
81. Thevis M, Piper T, Dib J, et al. 2017; Mass spectrometric characterization of the selective androgen receptor modulator (SARM) YK-11 for doping control purposes. Rapid Commun Mass Spectrom. 31:1175–83. DOI: 10.1002/rcm.7886. PMID: 28440570.
Article
82. Yatsu T, Kusakabe T, Kato K, Inouye Y, Nemoto K, Kanno Y. 2018; Selective androgen receptor modulator, YK11, up-regulates osteoblastic proliferation and differentiation in MC3T3-E1 cells. Biol Pharm Bull. 41:394–8. DOI: 10.1248/bpb.b17-00748. PMID: 29491216.
Article
83. Kanno Y, Ota R, Someya K, Kusakabe T, Kato K, Inouye Y. 2013; Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression. Biol Pharm Bull. 36:1460–5. DOI: 10.1248/bpb.b13-00231. PMID: 23995658.
Article
84. Lee SJ, Gharbi A, Shin JE, Jung ID, Park YM. 2021; Myostatin inhibitor YK11 as a preventative health supplement for bacterial sepsis. Biochem Biophys Res Commun. 543:1–7. DOI: 10.1016/j.bbrc.2021.01.030. PMID: 33588136.
Article
85. Kanno Y, Hikosaka R, Zhang SY, et al. 2011; (17α,20E)-17,20-[(1-methoxyethylidene) bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11) is a partial agonist of the androgen receptor. Biol Pharm Bull. 34:318–23. DOI: 10.1248/bpb.34.318. PMID: 21372378.
86. Suh J, Lee YS. 2020; Myostatin inhibitors: panacea or predicament for musculoskeletal disorders? J Bone Metab. 27:151–65. DOI: 10.11005/jbm.2020.27.3.151. PMID: 32911580. PMCID: PMC7571243.
Article
87. Ying SY, Becker A, Swanson G, et al. 1987; Follistatin specifically inhibits pituitary follicle stimulating hormone release in vitro. Biochem Biophys Res Commun. 149:133–9. DOI: 10.1016/0006-291X(87)91614-7. PMID: 3120723.
88. Mendias CL, Lynch EB, Gumucio JP, et al. 2015; Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J Physiol. 593:2037–52. DOI: 10.1113/jphysiol.2014.287144. PMID: 25640143. PMCID: PMC4405758.
Article
89. Mendias CL, Bakhurin KI, Faulkner JA. 2008; Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci U S A. 105:388–93. DOI: 10.1073/pnas.0707069105. PMID: 18162552. PMCID: PMC2224222.
Article
90. Chang H, Brown CW, Matzuk MM. 2002; Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 23:787–823. DOI: 10.1210/er.2002-0003. PMID: 12466190.
Article
91. Xu X, Zheng L, Yuan Q, et al. 2018; Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 6:2. DOI: 10.1038/s41413-017-0005-4. PMID: 29423331. PMCID: PMC5802812.
Article
92. Hoffmann R. 2002; Male androgenetic alopecia. Clin Exp Dermatol. 27:373–82. DOI: 10.1046/j.1365-2230.2002.01086.x. PMID: 12190637.
Article
93. Bhasin S, Woodhouse L, Casaburi R, et al. 2001; Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 281:E1172–81. DOI: 10.1152/ajpendo.2001.281.6.E1172. PMID: 11701431.
94. Farias MM, Cuevas AM, Rodriguez F. 2011; Set-point theory and obesity. Metab Syndr Relat Disord. 9:85–9. DOI: 10.1089/met.2010.0090. PMID: 21117971.
Article
95. Müller MJ, Bosy-Westphal A, Heymsfield SB. 2010; Is there evidence for a set point that regulates human body weight? F1000 Med Rep. 2:59. DOI: 10.3410/M2-59. PMID: 21173874. PMCID: PMC2990627.
Article
96. Mueller MJ, Maluf KS. 2002; Tissue adaptation to physical stress: a proposed "Physical Stress Theory" to guide physical therapist practice, education, and research. Phys Ther. 82:383–403. DOI: 10.1093/ptj/82.4.383. PMID: 11922854.
Article
97. Bickel CS, Cross JM, Bamman MM. 2011; Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 43:1177–87. DOI: 10.1249/MSS.0b013e318207c15d. PMID: 21131862.
Article
98. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. 2010; Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A. 107:15111–6. DOI: 10.1073/pnas.0913935107. PMID: 20713720. PMCID: PMC2930527.
Article
99. Seaborne RA, Strauss J, Cocks M, et al. 2018; Methylome of human skeletal muscle after acute & chronic resistance exercise training, detraining & retraining. Sci Data. 5:180213. DOI: 10.1038/sdata.2018.213. PMID: 30375987. PMCID: PMC6207066.
Article
100. Schoenfeld BJ, Ogborn D, Krieger JW. 2016; Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 46:1689–97. DOI: 10.1007/s40279-016-0543-8. PMID: 27102172.
Article
Full Text Links
  • KJSM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr