2. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. 2015; Satellite cells and skeletal muscle regeneration. Compr Physiol. 5:1027–59. DOI:
10.1002/cphy.c140068. PMID:
26140708.
Article
8. Bonnecaze AK, O'Connor T, Burns CA. 2021; Harm reduction in male patients actively using anabolic androgenic steroids (AAS) and performance-enhancing drugs (PEDs): a review. J Gen Intern Med. 36:2055–64. DOI:
10.1007/s11606-021-06751-3. PMID:
33948794. PMCID:
PMC8298654.
Article
11. Stocco DM, Clark BJ. 1996; Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 17:221–44. DOI:
10.1210/edrv-17-3-221. PMID:
8771357.
Article
12. Midzak AS, Chen H, Papadopoulos V, Zirkin BR. 2009; Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol Cell Endocrinol. 299:23–31. DOI:
10.1016/j.mce.2008.07.016. PMID:
18761053.
Article
13. Pastuszak AW, Gittelman M, Tursi JP, Jaffe JS, Schofield D, Miner MM. 2022; Pharmacokinetics of testosterone therapies in relation to diurnal variation of serum testosterone levels as men age. Andrology. 10:209–22. DOI:
10.1111/andr.13108. PMID:
34510812.
Article
14. Llewellyn W. William Llewellyn's anabolics. Molecular Nutrition LLC;Jupiter (FL): 11th ed. 2017.
18. Basualto-Alarcón C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. 2013; Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc. 45:1712–20. DOI:
10.1249/MSS.0b013e31828cf5f3. PMID:
23470307.
Article
19. Yarrow JF, McCoy SC, Borst SE. 2010; Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): a potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids. 75:377–89. DOI:
10.1016/j.steroids.2010.01.019. PMID:
20138077.
Article
20. Haren MT, Siddiqui AM, Armbrecht HJ, et al. 2011; Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 34:55–68. DOI:
10.1111/j.1365-2605.2010.01061.x. PMID:
20403060.
Article
21. Deane CS, Hughes DC, Sculthorpe N, Lewis MP, Stewart CE, Sharples AP. 2013; Impaired hypertrophy in myoblasts is improved with testosterone administration. J Steroid Biochem Mol Biol. 138:152–61. DOI:
10.1016/j.jsbmb.2013.05.005. PMID:
23714396.
Article
22. Braga M, Bhasin S, Jasuja R, Pervin S, Singh R. 2012; Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action. Mol Cell Endocrinol. 350:39–52. DOI:
10.1016/j.mce.2011.11.019. PMID:
22138414. PMCID:
PMC3264813.
Article
23. Serra C, Bhasin S, Tangherlini F, et al. 2011; The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology. 152:193–206. DOI:
10.1210/en.2010-0802. PMID:
21084444. PMCID:
PMC3033058.
Article
24. Wu Y, Bauman WA, Blitzer RD, Cardozo C. 2010; Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochem Biophys Res Commun. 400:679–83. DOI:
10.1016/j.bbrc.2010.08.127. PMID:
20816664.
Article
25. Dubois V, Laurent MR, Sinnesael M, et al. 2014; A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. 28:2979–94. DOI:
10.1096/fj.14-249748. PMID:
24671706.
Article
26. MacKrell JG, Yaden BC, Bullock H, et al. 2015; Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration. Nucl Recept Signal. 13:e005. DOI:
10.1621/nrs.13005. PMID:
26457071. PMCID:
PMC4599140.
Article
27. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S. 2004; Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab. 89:5245–55. DOI:
10.1210/jc.2004-0084. PMID:
15472231.
Article
28. Lucas-Herald AK, Alves-Lopes R, Montezano AC, Ahmed SF, Touyz RM. 2017; Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clin Sci (Lond). 131:1405–18. DOI:
10.1042/CS20170090. PMID:
28645930. PMCID:
PMC5736922.
Article
29. O'Malley BW, Tsai SY, Bagchi M, Weigel NL, Schrader WT, Tsai MJ. 1991; Molecular mechanism of action of a steroid hormone receptor. Recent Prog Horm Res. 47:1–24. DOI:
10.1016/B978-0-12-571147-0.50005-6. PMID:
1745818.
30. Wärnmark A, Treuter E, Wright AP, Gustafsson JA. 2003; Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 17:1901–9. DOI:
10.1210/me.2002-0384. PMID:
12893880.
Article
31. Skinner MK. Encyclopedia of reproduction. Elsevier, Academic Press;Amsterdam, Boston:
33. Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG. 1999; The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol. 19:8383–92. DOI:
10.1128/MCB.19.12.8383. PMID:
10567563. PMCID:
PMC84931.
Article
34. Singh R, Bhasin S, Braga M, et al. 2009; Regulation of myogenic differentiation by androgens: cross talk between androgen receptor/beta-catenin and follistatin/transforming growth factor-beta signaling pathways. Endocrinology. 150:1259–68. DOI:
10.1210/en.2008-0858. PMID:
18948405. PMCID:
PMC2654730.
35. Parr MK, Müller-Schöll A. 2018; Pharmacology of doping agents— mechanisms promoting muscle hypertrophy. AIMS Mol Sci. 5:145–55. DOI:
10.3934/molsci.2018.2.131.
37. Wyce A, Bai Y, Nagpal S, Thompson CC. 2010; Research resource: the androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol. 24:1665–74. DOI:
10.1210/me.2010-0138. PMID:
20610535. PMCID:
PMC5417449.
Article
39. Lee NK, Skinner JP, Zajac JD, MacLean HE. 2011; Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am J Physiol Endocrinol Metab. 301:E172–9. DOI:
10.1152/ajpendo.00094.2011. PMID:
21505150.
Article
40. Saartok T, Dahlberg E, Gustafsson JA. 1984; Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology. 114:2100–6. DOI:
10.1210/endo-114-6-2100. PMID:
6539197.
Article
43. El-Maouche D, Dobs A. Legato MJ, editor. Chapter 60. Testosterone replacement therapy in men and women. Principles of gender-specific medicine. Academic Press;San Diego: 2nd ed. 2010. p. 737–60. DOI:
10.1016/B978-0-12-374271-1.00060-5.
46. Dayton WR, White ME. 2014; Meat Science and Muscle Biology Symposium: role of satellite cells in anabolic steroid-induced muscle growth in feedlot steers. J Anim Sci. 92:30–8. DOI:
10.2527/jas.2013-7077. PMID:
24166993.
47. Kahlert S, Grohé C, Karas RH, Löbbert K, Neyses L, Vetter H. 1997; Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun. 232:373–8. DOI:
10.1006/bbrc.1997.6223. PMID:
9125184.
Article
48. Balgoma D, Zelleroth S, Grönbladh A, Hallberg M, Pettersson C, Hedeland M. 2020; Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics. 16:12. DOI:
10.1007/s11306-019-1632-0. PMID:
31925559. PMCID:
PMC6954146.
Article
49. Labrie F, Luu-The V, Labrie C, Simard J. 2001; DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 22:185–212. DOI:
10.1006/frne.2001.0216. PMID:
11456468.
Article
50. Markworth JF, Cameron-Smith D. 2013; Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway. Am J Physiol Cell Physiol. 304:C56–67. DOI:
10.1152/ajpcell.00038.2012. PMID:
23076795.
Article
54. Suvitha A, Souissi M, Sahara R, Venkataramanan NS. 2019; Deciphering the nature of interactions in nandrolone/testosterone encapsulated cucurbituril complexes : a computational study. J Incl Phenom Macrocycl Chem. 93:183–92. DOI:
10.1007/s10847-018-0869-y.
Article
55. Pomara C, Barone R, Marino Gammazza A, et al. 2016; Effects of nandrolone stimulation on testosterone biosynthesis in Leydig cells. J Cell Physiol. 231:1385–91. DOI:
10.1002/jcp.25272. PMID:
26626779. PMCID:
PMC5064776.
Article
56. Chang MC, Hafez ES, Merrill A, Pincus G, Zarrow MX. 1956; Studies of the biological activity of certain 19-nor steroids in female animals. Endocrinology. 59:695–707. DOI:
10.1210/endo-59-6-695. PMID:
13375596.
Article
58. Wang HQ, Takebayashi K, Tsuchida K, Nishimura M, Noda Y. 2003; Follistatin-related gene (FLRG) expression in human endometrium: sex steroid hormones regulate the expression of FLRG in cultured human endometrial stromal cells. J Clin Endocrinol Metab. 88:4432–9. DOI:
10.1210/jc.2002-021758. PMID:
12970321.
Article
59. Krasowski MD, Drees D, Morris CS, Maakestad J, Blau JL, Ekins S. 2014; Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction. BMC Clin Pathol. 14:33. DOI:
10.1186/1472-6890-14-33. PMID:
25071417. PMCID:
PMC4112981.
Article
61. Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A. 2007; The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Mol Pharmacol. 71:473–82. DOI:
10.1124/mol.106.031112. PMID:
17105867.
Article
62. Houtman CJ, Sterk SS, van de Heijning MP, et al. 2009; Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays. Anal Chim Acta. 637:247–58. DOI:
10.1016/j.aca.2008.09.037. PMID:
19286037.
Article
63. Hershberger LG, Shipley EG, Meyer RK. 1953; Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med. 83:175–80. DOI:
10.3181/00379727-83-20301. PMID:
13064212.
Article
69. Zilbermint MF, Dobs AS. 2009; Nonsteroidal selective androgen receptor modulator Ostarine in cancer cachexia. Future Oncol. 5:1211–20. DOI:
10.2217/fon.09.106. PMID:
19852734.
70. Basaria S, Collins L, Dillon EL, et al. 2013; The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci. 68:87–95. DOI:
10.1093/gerona/gls078. PMID:
22459616. PMCID:
PMC4111291.
Article
71. Sieck GC, Mantilla CB. Miller VM, Hay M, editors. Influence of sex hormones on the neuromuscular junction. Principles of sex-based differences in physiology. Elsevier;Amsterdam, Boston, Heidelberg: 2004. p. 183–94. DOI:
10.1016/S1569-2558(03)34013-5.
Article
72. Cunningham RL, Giuffrida A, Roberts JL. 2009; Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase Cdelta. Endocrinology. 150:5539–48. DOI:
10.1210/en.2009-0640. PMID:
19837873. PMCID:
PMC2795716.
Article
74. Graham MR, Evans P, Davies B, Baker JS. 2008; AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects. Ther Clin Risk Manag. 4:587–97. DOI:
10.2147/TCRM.S2495. PMID:
18827854. PMCID:
PMC2500251.
Article
75. Mohler ML, Bohl CE, Jones A, et al. 2009; Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem. 52:3597–617. DOI:
10.1021/jm900280m. PMID:
19432422.
Article
76. Patel K, Amthor H. 2005; The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord. 15:117–26. DOI:
10.1016/j.nmd.2004.10.018. PMID:
15694133.
Article
77. Amthor H, Macharia R, Navarrete R, et al. 2007; Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A. 104:1835–40. DOI:
10.1073/pnas.0604893104. PMID:
17267614. PMCID:
PMC1794294.
Article
78. Mosler S, Geisler S, Hengevoss J, et al. 2013; Modulation of follistatin and myostatin propeptide by anabolic steroids and gender. Int J Sports Med. 34:567–72. DOI:
10.1055/s-0032-1312585. PMID:
23559411.
Article
79. Dalbo VJ, Roberts MD, Mobley CB, et al. 2017; Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia. 49:10.1111/and.12622. DOI:
10.1111/and.12622. PMID:
27246614.
Article
81. Thevis M, Piper T, Dib J, et al. 2017; Mass spectrometric characterization of the selective androgen receptor modulator (SARM) YK-11 for doping control purposes. Rapid Commun Mass Spectrom. 31:1175–83. DOI:
10.1002/rcm.7886. PMID:
28440570.
Article
82. Yatsu T, Kusakabe T, Kato K, Inouye Y, Nemoto K, Kanno Y. 2018; Selective androgen receptor modulator, YK11, up-regulates osteoblastic proliferation and differentiation in MC3T3-E1 cells. Biol Pharm Bull. 41:394–8. DOI:
10.1248/bpb.b17-00748. PMID:
29491216.
Article
83. Kanno Y, Ota R, Someya K, Kusakabe T, Kato K, Inouye Y. 2013; Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression. Biol Pharm Bull. 36:1460–5. DOI:
10.1248/bpb.b13-00231. PMID:
23995658.
Article
84. Lee SJ, Gharbi A, Shin JE, Jung ID, Park YM. 2021; Myostatin inhibitor YK11 as a preventative health supplement for bacterial sepsis. Biochem Biophys Res Commun. 543:1–7. DOI:
10.1016/j.bbrc.2021.01.030. PMID:
33588136.
Article
85. Kanno Y, Hikosaka R, Zhang SY, et al. 2011; (17α,20E)-17,20-[(1-methoxyethylidene) bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11) is a partial agonist of the androgen receptor. Biol Pharm Bull. 34:318–23. DOI:
10.1248/bpb.34.318. PMID:
21372378.
87. Ying SY, Becker A, Swanson G, et al. 1987; Follistatin specifically inhibits pituitary follicle stimulating hormone release in vitro. Biochem Biophys Res Commun. 149:133–9. DOI:
10.1016/0006-291X(87)91614-7. PMID:
3120723.
88. Mendias CL, Lynch EB, Gumucio JP, et al. 2015; Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J Physiol. 593:2037–52. DOI:
10.1113/jphysiol.2014.287144. PMID:
25640143. PMCID:
PMC4405758.
Article
90. Chang H, Brown CW, Matzuk MM. 2002; Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 23:787–823. DOI:
10.1210/er.2002-0003. PMID:
12466190.
Article
93. Bhasin S, Woodhouse L, Casaburi R, et al. 2001; Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 281:E1172–81. DOI:
10.1152/ajpendo.2001.281.6.E1172. PMID:
11701431.
95. Müller MJ, Bosy-Westphal A, Heymsfield SB. 2010; Is there evidence for a set point that regulates human body weight? F1000 Med Rep. 2:59. DOI:
10.3410/M2-59. PMID:
21173874. PMCID:
PMC2990627.
Article
96. Mueller MJ, Maluf KS. 2002; Tissue adaptation to physical stress: a proposed "Physical Stress Theory" to guide physical therapist practice, education, and research. Phys Ther. 82:383–403. DOI:
10.1093/ptj/82.4.383. PMID:
11922854.
Article
97. Bickel CS, Cross JM, Bamman MM. 2011; Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 43:1177–87. DOI:
10.1249/MSS.0b013e318207c15d. PMID:
21131862.
Article
98. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. 2010; Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A. 107:15111–6. DOI:
10.1073/pnas.0913935107. PMID:
20713720. PMCID:
PMC2930527.
Article
99. Seaborne RA, Strauss J, Cocks M, et al. 2018; Methylome of human skeletal muscle after acute & chronic resistance exercise training, detraining & retraining. Sci Data. 5:180213. DOI:
10.1038/sdata.2018.213. PMID:
30375987. PMCID:
PMC6207066.
Article
100. Schoenfeld BJ, Ogborn D, Krieger JW. 2016; Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 46:1689–97. DOI:
10.1007/s40279-016-0543-8. PMID:
27102172.
Article