1. Tang JW, Loh TP. Correlations between climate factors and incidence: a contributor to RSV seasonality. Rev Med Virol. 2014; Jan. 24(1):15–34.
Article
2. Vandini S, Corvaglia L, Alessandroni R, Aquilano G, Marsico C, Spinelli M, et al. Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants. Ital J Pediatr. 2013; Jan. 39(1):1.
Article
3. Sohn J, Jung IY, Ku Y, Kim Y. Machine-learning-based rehabilitation prognosis prediction in patients with ischemic stroke using brainstem auditory evoked potential. Diagnostics (Basel). 2021; Apr. 11(4):673.
Article
4. Volkova S, Ayton E, Porterfield K, Corley CD. Forecasting influenzalike illness dynamics for military populations using neural networks and social media. PLoS One. 2017; Dec. 12(12):e0188941.
Article
5. Lu J, Bu P, Xia X, Yao L, Zhang Z, Tan Y. A new deep learning algorithm for detecting the lag effect of fine particles on hospital emergency visits for respiratory diseases. IEEE Access. 2020; 8:145593–600.
Article
6. Yang PH, Hsieh MT, Lin GM, Chen MJ, Yeh CH, Huang ZX. Prediction of outpatient visits for upper respiratory tract infections by machine learning of PM
2.5 and PM
10 levels in Taiwan. In : In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW); 2018.
Article
7. Bolourani S, Brenner M, Wang P, McGinn T, Hirsch JS, Barnaby D, et al. A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: model development and validation. J Med Internet Res. 2021; Feb. 23(2):e24246.
Article
8. Dürichen R, Pimentel MA, Clifton L, Schweikard A, Clifton DA. Multitask Gaussian processes for multivariate physiological time-series analysis. IEEE Trans Biomed Eng. 2015; Jan. 62(1):314–22.
Article
9. Lundberg S, Lee SI. A unified approach to interpreting model predictions. In : In Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017.
10. Kim H, Kim Y, Hong YC. The lag-effect pattern in the relationship of particulate air pollution to daily mortality in Seoul, Korea. Int J Biometeorol. 2003; Sep. 48(1):25–30.
Article
11. Robnik-Sikonja M, Kononenko I. An adaptation of Relief for attribute estimation in regression. In : In Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97); 1997.
12. Liu L, Yu Y, Fei Z, Li M, Wu FX, Li HD, et al. An interpretable boosting model to predict side effects of analgesics for osteoarthritis. BMC Syst Biol. 2018; Nov. 12(Suppl 6):105.
Article
13. Liu H, Ong YS, Shen X, Cai J. When Gaussian process meets big data: a review of scalable GPs. IEEE Trans Neural Netw Learn Syst. 2020; Nov. 31(11):4405–23.
Article
14. Chen S, Xu J, Wu Y, Wang X, Fang S, Cheng J, et al. Predicting temporal propagation of seasonal influenza using improved gaussian process model. J Biomed Inform. 2019; May. 93:103144.
Article
15. Caywood MS, Roberts DM, Colombe JB, Greenwald HS, Weiland MZ. Gaussian process regression for predictive but interpretable machine learning models: an example of predicting mental workload across tasks. Front Hum Neurosci. 2017; Jan. 10:647.
Article
16. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol. 2015; Oct. 11(10):e1004513.
Article
17. Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med. 2021; May. 4(1):87.
Article
18. Shapley LS, Roth AE. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge: Cambridge University Press;1988.
19. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020; Jan. 2(1):56–67.
Article
20. Vandini S, Bottau P, Faldella G, Lanari M. Immunological, viral, environmental, and individual factors modulating lung immune response to respiratory syncytial virus. Biomed Res Int. 2015; 2015:875723.
Article
21. Ward MP, Xiao S, Zhang Z. Humidity is a consistent climatic factor contributing to SARS-CoV-2 transmission. Transbound Emerg Dis. 2020; Nov. 67(6):3069–74.
Article
22. Ciencewicki J, Jaspers I. Air pollution and respiratory viral infection. Inhal Toxicol. 2007; Nov. 19(14):1135–46.
Article
23. Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annu Rev Virol. 2020; Sep. 7(1):83–101.
Article
24. Ferrari U, Exner T, Wanka ER, Bergemann C, Meyer-Arnek J, Hildenbrand B, et al. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany. Int J Biometeorol. 2012; Jan. 56(1):137–43.
Article
25. Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiationinduced immunosuppression. Eur J Cell Biol. 2011; Jun-Jul. 90(6-7):560–4.
Article
26. Kim SY, Kong IG, Min C, Choi HG. Association of air pollution with increased risk of peritonsillar abscess formation. JAMA Otolaryngol Head Neck Surg. 2019; Jun. 145(6):530–5.
Article
27. Kim SY, Min C, Yoo DM, Park B, Choi HG. Short-term exposure to air pollution and epiglottitis: a nested case-control study. Laryngoscope. 2021; Nov. 131(11):2483–9.
Article
28. Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, Masiol M, et al. The association between respiratory infection and air pollution in the setting of air quality policy and economic change. Ann Am Thorac Soc. 2019; Mar. 16(3):321–30.
Article
29. Horne BD, Joy EA, Hofmann MG, Gesteland PH, Cannon JB, Lefler JS, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am J Respir Crit Care Med. 2018; Sep. 198(6):759–66.
Article
30. Su W, Wu X, Geng X, Zhao X, Liu Q, Liu T. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health. 2019; Oct. 19(1):1319.
Article
31. Hyrkas H, Ikaheimo TM, Jaakkola JJ, Jaakkola MS. Asthma control and cold weather-related respiratory symptoms. Respir Med. 2016; Apr. 113:1–7.
Article
32. Hyrkas H, Jaakkola MS, Ikaheimo TM, Hugg TT, Jaakkola JJ. Asthma and allergic rhinitis increase respiratory symptoms in cold weather among young adults. Respir Med. 2014; Jan. 108(1):63–70.
Article
33. Koskela HO. Cold air-provoked respiratory symptoms: the mechanisms and management. Int J Circumpolar Health. 2007; Apr. 66(2):91–100.
Article
34. Lin L, Li T, Sun M, Liang Q, Ma Y, Wang F, et al. Effect of particulate matter exposure on the prevalence of allergic rhinitis in children: a systematic review and meta-analysis. Chemosphere. 2021; Apr. 268:128841.
Article
35. Zou QY, Shen Y, Ke X, Hong SL, Kang HY. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: a meta-analysis. Int J Pediatr Otorhinolaryngol. 2018; Sep. 112:82–90.
Article
36. Nhung NT, Schindler C, Dien TM, Probst-Hensch N, Kunzli N. Association of ambient air pollution with lengths of hospital stay for hanoi children with acute lower-respiratory infection, 2007-2016. Environ Pollut. 2019; Apr. 247:752–62.
Article
37. Zhu Y, Xie J, Huang F, Cao L. Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci Total Environ. 2020; Jul. 727:138704.
Article
38. Liu Y, Liu J, Chen F, Shamsi BH, Wang Q, Jiao F, et al. Impact of meteorological factors on lower respiratory tract infections in children. J Int Med Res. 2016; Feb. 44(1):30–41.
Article
39. Tasci SS, Kavalci C, Kayipmaz AE. Relationship of meteorological and air pollution parameters with pneumonia in elderly patients. Emerg Med Int. 2018; Mar. 2018:4183203.
Article
40. Banerjee A, Dunson DB, Tokdar ST. Efficient Gaussian process regression for large datasets. Biometrika. 2013; Mar. 100(1):75–89.
Article