Int J Stem Cells.  2022 May;15(2):136-143. 10.15283/ijsc21027.

Evaluation of Circulating Endothelial Progenitor Cells in Abdominal Aortic Aneurysms after Endovascular Aneurysm Repair

Affiliations
  • 1Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
  • 2Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China

Abstract

Background and Objectives
Circulating endothelial progenitor cells (EPCs) participate in vascular repair and predict cardiovascular outcomes. The aim of this study was to investigate the correlation between EPCs and abdominal aortic aneurysms (AAAs).
Methods and Results
Patients (age 67±9.41 years) suffering from AAAs (aortic diameters 58.09±11.24 mm) were prospectively enrolled in this study. All patients received endovascular aneurysm repair (EVAR). Blood samples were taken preoperatively and 14 days after surgery from patients with aortic aneurysms. Samples were also obtained from age-matched control subjects. Circulating EPCs were defined as those cells that were double positive for CD34 and CD309. Rat models of AAA formation were generated by the peri-adventitial elastase application of either saline solution (control; n=10), or porcine pancreatic elastase (PPE; n=14). The aortas were analyzed using an ultrasonic video system and immunohistochemistry. The levels of CD34/CD309 cells in the peripheral blood mononuclear cell populations were measured by flow cytometry. The baseline numbers of circulating EPCs (CD34/CD309) in the peripheral blood were significantly smaller in AAA patients compared with control subjects. The number of EPCs doubled by the 14th day after EVAR. A total of 78.57% of rats in the PPE group (11/14) formed AAAs (dilation ratio >150%). The numbers of EPCs from defined AAA rats were significantly decreased compared with the control group.
Conclusions
EPC levels may be useful for monitoring abdominal aorta aneurysms and rise after EVAR in patients with aortic aneurysms, and might contribute to the rapid endothelialization of vessels.

Keyword

Abdominal aortic aneurysms; Endothelial progenitor cells; Endovascular aneurysm repair; Porcine pancreatic elastase

Figure

  • Fig. 1 Circulating levels of EPCs in the peripheral blood from subjects. (A) Circulating numbers of EPCs waswere measured in different groups by flow cytometry. (B) Percentage of circulating CD34+/CD309+ cells in patients with abdominal aortic aneurysms compared to age-matched con-trols. *p<0.05, vs. Con. #p<0.05, vs. AAA before EVAR.

  • Fig. 2 Aneurysm formation after peri-adventitial elastase application. (A) Characteristic morphology of the abdominal aorta. (Left) One abdominal aortic aneurysm is shown from the Control group. (Middle) An aorta at the end of 5th week after PPE application. (Right) Morphology of a separated abdominal aorta. (B) Changes in the aortic diameter above baseline and post-operatively. (C) The dilation ratios of the abdominal aorta followed for 5 weeks. An aneurysm was defined as an increase in the aortic diameter by ≥ 50% above baseline. *p<0.05, vs. Con.

  • Fig. 3 Histological sections of abdominal aorta. (A) Hematoxylin and eosin staining of the aorta. (B) Verhoeff-Van Gieson (VVG) staining of elastic fibers in aneurysm sections. (C) Immunofluorescence of abdominal aorta sections labeled with antibodies to detect CD34 (red) and CD309 (green). The white arrow indicates CD34+/CD309+ cells colocalizing as orange.

  • Fig. 4 Circulating levels of EPCs in AAA rats. (A) Circulating numbers of EPCs in different groups by flow cytometry. (B) Percentage of circulating CD34+/CD309+ cells in rats with abdominal aortic aneurysms compared with controls. *p<0.05, vs. Con.


Reference

References

1. Aggarwal S, Qamar A, Sharma V, Sharma A. 2011; Abdominal aortic aneurysm: a comprehensive review. Exp Clin Cardiol. 16:11–15. PMID: 21523201. PMCID: PMC3076160.
2. Sakalihasan N, Limet R, Defawe OD. 2005; Abdominal aortic aneurysm. Lancet. 365:1577–1589. DOI: 10.1016/S0140-6736(05)66459-8. PMID: 15866312.
Article
3. Altobelli E, Rapacchietta L, Profeta VF, Fagnano R. 2018; Risk factors for abdominal aortic aneurysm in population-based studies: a systematic review and meta-analysis. Int J Environ Res Public Health. 15:2805. DOI: 10.3390/ijerph15122805. PMID: 30544688. PMCID: PMC6313801.
Article
4. Parietti E, Pallandre JR, Deschaseaux F, Aupècle B, Durst C, Kantelip JP, Chocron S, Davani S. 2011; Presence of circulating endothelial progenitor cells and levels of stromal-de-rived factor-1α are associated with ascending aorta aneurysm size. Eur J Cardiothorac Surg. 40:e6–e12. DOI: 10.1016/j.ejcts.2011.02.065. PMID: 21481600.
Article
5. Hayek SS, MacNamara J, Tahhan AS, Awad M, Yadalam A, Ko YA, Healy S, Hesaroieh I, Ahmed H, Gray B, Sher SS, Ghasemzadeh N, Patel R, Kim J, Waller EK, Quyyumi AA. 2016; Circulating progenitor cells identify peripheral arterial disease in patients with coronary artery disease. Circ Res. 119:564–571. DOI: 10.1161/CIRCRESAHA.116.308802. PMID: 27267067. PMCID: PMC4975640.
Article
6. Dawson J, Tooze J, Cockerill G, Choke E, Loftus I, Thompson MM. 2006; Endothelial progenitor cells and abdominal aortic aneurysms. Ann N Y Acad Sci. 1085:327–330. DOI: 10.1196/annals.1383.011. PMID: 17182952.
Article
7. Sung SH, Wu TC, Chen JS, Chen YH, Huang PH, Lin SJ, Shih CC, Chen JW. 2013; Reduced number and impaired function of circulating endothelial progenitor cells in patients with abdominal aortic aneurysm. Int J Cardiol. 168:1070–1077. DOI: 10.1016/j.ijcard.2012.11.002. PMID: 23182004.
Article
8. Chong MS, Ng WK, Chan JK. 2016; Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl Med. 5:530–538. DOI: 10.5966/sctm.2015-0227. PMID: 26956207. PMCID: PMC4798740.
Article
9. Leake AE, Segal MA, Chaer RA, Eslami MH, Al-Khoury G, Makaroun MS, Avgerinos ED. 2017; Meta-analysis of open and endovascular repair of popliteal artery aneurysms. J Vasc Surg. 65:246–256.e2. DOI: 10.1016/j.jvs.2016.09.029. PMID: 28010863.
Article
10. Ammar AD. 2019; Mortality for open abdominal aortic aneurysm repair before and after endovascular aortic repair (EVAR). Am Surg. 85:1341–1344. DOI: 10.1177/000313481908501226. PMID: 31908215.
Article
11. Dua A, Koprowski S, Upchurch G, Lee CJ, Desai SS. 2017; Progressive shortfall in open aneurysm experience for vascular surgery trainees with the impact of fenestrated and branched endovascular technology. J Vasc Surg. 65:257–261. DOI: 10.1016/j.jvs.2016.08.075. PMID: 27743805.
Article
12. Zhou B, Cao XC, Fang ZH, Zheng CL, Han ZB, Ren H, Poon MC, Han ZC. 2007; Prevention of diabetic microangiopathy by prophylactic transplant of mobilized peripheral blood mononuclear cells. Acta Pharmacol Sin. 28:89–97. DOI: 10.1111/j.1745-7254.2007.00476.x. PMID: 17184587.
Article
13. Zheng H, Shen CJ, Qiu FY, Zhao YB, Fu GS. 2010; Stromal cell-derived factor 1alpha reduces senescence of endothelial progenitor subpopulation in lectin-binding and DiLDL-uptaking cell through telomerase activation and telomere elongation. J Cell Physiol. 223:757–763. DOI: 10.1002/jcp.22086. PMID: 20232301.
14. Hu G, Dong Z, Fu W. 2017; A novel modification of the murine elastase infusion model of abdominal aortic aneurysm formation. Ann Vasc Surg. 42:246–253. DOI: 10.1016/j.avsg.2017.01.006. PMID: 28288888.
Article
15. Olivieri F, Pompilio G, Balistreri CR. 2016; Endothelial progenitor cells in ageing. Mech Ageing Dev. 159:1–3. DOI: 10.1016/j.mad.2016.09.002. PMID: 27634556.
Article
16. Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y, Li L, Zhang T, Zhou B, Wu X, Xu H, Fang M, Gao Y, Chen Q, Xu Y. 2015; Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol. 80:23–33. DOI: 10.1016/j.yjmcc.2014.11.009. PMID: 25446178.
Article
17. Balistreri CR, Ruvolo G, Lio D, Madonna R. 2017; Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature". J Mol Cell Cardiol. 110:38–53. DOI: 10.1016/j.yjmcc.2017.06.011. PMID: 28668304.
Article
18. Zhang H, Liu J, Qu D, Wang L, Wong CM, Lau CW, Huang Y, Wang YF, Huang H, Xia Y, Xiang L, Cai Z, Liu P, Wei Y, Yao X, Ma RCW, Huang Y. 2018; Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A. 115:E6927–E6936. DOI: 10.1073/pnas.1721521115. PMID: 29967177. PMCID: PMC6055191.
Article
19. Huang PH, Chen YH, Chen YL, Wu TC, Chen JW, Lin SJ. 2007; Vascular endothelial function and circulating endothelial progenitor cells in patients with cardiac syndrome X. Heart. 93:1064–1070. DOI: 10.1136/hrt.2006.107763. PMID: 17488770. PMCID: PMC1954999.
Article
20. Li DW, Liu ZQ, Wei J, Liu Y, Hu LS. 2012; Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 30:1000–1006. DOI: 10.3892/ijmm.2012.1108. PMID: 22922670.
21. Schatteman G. 2005; Are circulating CD133+ cells biomarkers of vascular disease? Arterioscler Thromb Vasc Biol. 25:270–271. DOI: 10.1161/01.ATV.0000154484.58485.24. PMID: 15681306.
22. Etemadifar M, Dehghani L, Ganji H, Soleimani R, Talebi M, Eskandari N, Samani FS, Meamar R. 2015; Evaluation of the circulating CD34(+), CD309(+), and endothelial progenitor cells in patients with first attack of optic neuritis. Adv Biomed Res. 4:151. DOI: 10.4103/2277-9175.161578. PMID: 26380236. PMCID: PMC4550950.
Article
23. Fritzenwanger M, Lorenz F, Jung C, Fabris M, Thude H, Barz D, Figulla HR. 2009; Differential number of CD34+, CD133+ and CD34+/CD133+ cells in peripheral blood of patients with congestive heart failure. Eur J Med Res. 14:113–117. DOI: 10.1186/2047-783X-14-3-113. PMID: 19380281. PMCID: PMC3352059.
Article
24. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N. 2006; CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res. 98:e20–e25. DOI: 10.1161/01.RES.0000205765.28940.93. PMID: 16439688.
25. Liao YF, Chen LL, Zeng TS, Li YM, Fan Yu, Hu LJ, Ling Yue. 2010; Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes. Vasc Med. 15:279–285. DOI: 10.1177/1358863X10367537. PMID: 20511292.
Article
26. Gu S, Zhang W, Chen J, Ma R, Xiao X, Ma X, Yao Z, Chen Y. 2014; EPC-derived microvesicles protect cardiomyocytes from Ang II-induced hypertrophy and apoptosis. PLoS One. 9:e85396. DOI: 10.1371/journal.pone.0085396. PMID: 24392165. PMCID: PMC3879348.
Article
27. Huang WP, Yin WH, Chen JS, Huang PH, Chen JW, Lin SJ. 2020; Fenofibrate reverses dysfunction of EPCs caused by chronic heart failure. J Cardiovasc Transl Res. 13:158–170. DOI: 10.1007/s12265-019-09889-y. PMID: 31701352.
Article
28. Fadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, de Kreutzenberg SV. 2006; Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general popu-lation. Stroke. 37:2277–2282. DOI: 10.1161/01.STR.0000236064.19293.79. PMID: 16873710.
Article
29. Eizawa T, Ikeda U, Murakami Y, Matsui K, Yoshioka T, Suzuki C, Takahashi M, Muroi K, Kamisawa O, Fuse K, Shimada K. 2004; Increase in circulating endothelial progenitor cells after aortic aneurysm repair. Heart Vessels. 19:107–110. DOI: 10.1007/s00380-003-0751-7. PMID: 15168056.
Article
30. Lacquaniti A, Giardina M, Lucisano S, Messina R, Buemi A, Risitano CD, Chirico V, Buemi M, David A. 2013; Neutrophil gelatinase-associated lipocalin (NGAL) and endothelial progenitor cells (EPCs) evaluation in aortic aneurysm repair. Curr Vasc Pharmacol. 11:1001–1010. DOI: 10.2174/157016111106140128124607. PMID: 22724477.
Article
31. Rigato M, Avogaro A, Fadini GP. 2016; Levels of circulating progenitor cells, cardiovascular outcomes and death: a meta-analysis of prospective observational studies. Circ Res. 118:1930–1939. DOI: 10.1161/CIRCRESAHA.116.308366. PMID: 27073015.
Article
32. Buffa S, Borzì D, Chiarelli R, Crapanzano F, Lena AM, Nania M, Candi E, Triolo F, Ruvolo G, Melino G, Balistreri CR. 2019; Biomarkers for vascular ageing in aorta tissues and blood samples. Exp Gerontol. 128:110741. DOI: 10.1016/j.exger.2019.110741. PMID: 31648011.
Article
33. Balistreri CR, Crapanzano F, Schirone L, Allegra A, Pisano C, Ruvolo G, Forte M, Greco E, Cavarretta E, Marullo AGM, Sciarretta S, Frati G. 2018; Deregulation of Notch1 pathway and circulating endothelial progenitor cell (EPC) number in patients with bicuspid aortic valve with and without ascending aorta aneurysm. Sci Rep. 8:13834. DOI: 10.1038/s41598-018-32170-2. PMID: 30218064. PMCID: PMC6138685. PMID: cb1af62bbb1a40608db4adefa71c4b88.
Article
34. Canning P, Tawfick W, Whelan N, Hynes N, Sultan S. 2019; Cost-effectiveness analysis of endovascular versus open repair of abdominal aortic aneurysm in a high-volume center. J Vasc Surg. 70:485–496. DOI: 10.1016/j.jvs.2018.11.018. PMID: 30777686.
Article
35. Bhamidipati CM, Mehta GS, Lu G, Moehle CW, Barbery C, DiMusto PD, Laser A, Kron IL, Upchurch GR Jr, Ailawadi G. 2012; Development of a novel murine model of aortic aneurysms using peri-adventitial elastase. Surgery. 152:238–246. DOI: 10.1016/j.surg.2012.02.010. PMID: 22828146. PMCID: PMC3601193.
Article
36. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB. 1990; Elastase-induced experimental aneurysms in rats. Circulation. 82:973–981. DOI: 10.1161/01.CIR.82.3.973. PMID: 2144219.
Article
37. Busch A, Chernogubova E, Jin H, Meurer F, Eckstein HH, Kim M, Maegdefessel L. 2018; Four surgical modifications to the classic elastase perfusion aneurysm model enable haemodynamic alterations and extended elastase perfusion. Eur J Vasc Endovasc Surg. 56:102–109. DOI: 10.1016/j.ejvs.2018.03.018. PMID: 29703523.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr