1. Lee SM, Ryu SE, Ahn S. Mass media and social media agenda analysis using text mining:
focused on ‘5-day rotation mask distribution
system’. J Korea Content Assoc. 2020; 20:460–469.
2. Boon-Itt S, Skunkan Y. Public perception of the COVID-19 pandemic on twitter: sentiment
analysis and topic modeling study. JMIR Public Health Surveil. 2020; 6:e21978. DOI:
10.2196/21978. PMID:
33108310. PMCID:
PMC7661106.
3. Naseem SS, Kumar D, Parsa MS, Golab L. Text mining of COVID-19 discussions on reddit. In. In : He J, Purohit H, Huang G, Gao X, Deng K, editors. editors. Proceedings of the 2020 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT). 2020. 12. 14-17. Melbourne. Piscataway (NJ): IEEE;2020. p. p. 687–691. DOI:
10.1109/WIIAT50758.2020.00104.
4. Jo W, Lee J, Park J, Kim Y. Online information exchange and anxiety spread in the early stage
of the novel coronavirus (COVID-19) outbreak in South Korea: structural
topic model and network analysis. J Med Internet Res. 2020; 22:e19455. DOI:
10.2196/19455. PMID:
32463367. PMCID:
PMC7268668.
5. Shim JG, Ryu KH, Lee SH, Cho EA, Lee YJ, Ahn JH. Text mining approaches to analyze public sentiment changes
regarding COVID-19 vaccines on social media in Korea. Int J Environ Res Public Health. 2021; 18:6549. DOI:
10.3390/ijerph18126549. PMID:
34207016. PMCID:
PMC8296514.
8. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003; 3:993–1022.
9. Maier D, Waldherr A, Miltner P, Wiedemann G, Niekler A, Keinert A, et al. Applying LDA topic modeling in communication research: toward a
valid and reliable methodology. Commun Methods Meas. 2018; 12:93–118. DOI:
10.1080/19312458.2018.1430754.
11. Li N, Wu DD. Using text mining and sentiment analysis for online forums
hotspot detection and forecast. Decis Support Syst. 2010; 48:354–368. DOI:
10.1016/j.dss.2009.09.003.
12. Suh H, So J. A study on the topic and sentiment of national petition data
using text analysis. Korean Data Anal Soc. 2020; 22:999–1011. DOI:
10.37727/jkdas.2020.22.3.999.
13. Park SM, Na CW, Choi MS, Lee DH, On BW. KNU Korean sentiment lexicon: Bi-LSTM-based method for building a
Korean sentiment lexicon. J Intell Inf Syst. 2018; 24:219–240.
14. Kim Y, Kim YY, Yeom H, Jang J, Hwang I, Park K, et al. COVID-19 1-year outbreak report as of January 19, 2021 in the
Republic of Korea. Public Health Wkly Rep. 2021; 14:478–481.
15. Tang J, Meng Z, Nguyen X, Mei Q, Zhang M. Understanding the limiting factors of topic modeling via
posterior contraction analysis. In. In : Xing EP, Jebara T, editors. editors. Proceedings of the 31st International Conference on Machine
Learning. 2014. 06. 21-26. Stroudsburg (PA): International Machine Learning Society;2014. p. p. 190–198.