1. Baccetti T, Franchi L, McNamara JA Jr. 2005; The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod. 11:119–29. DOI:
10.1053/j.sodo.2005.04.005.
Article
4. Franchi L, Baccetti T, De Toffol L, Polimeni A, Cozza P. 2008; Phases of the dentition for the assessment of skeletal maturity: a diagnostic performance study. Am J Orthod Dentofacial Orthop. 133:395–400. quiz 476.e1–2. DOI:
10.1016/j.ajodo.2006.02.040. PMID:
18331939.
Article
6. Zhao XG, Lin J, Jiang JH, Wang Q, Ng SH. 2012; Validity and reliability of a method for assessment of cervical vertebral maturation. Angle Orthod. 82:229–34. DOI:
10.2319/051511-333.1. PMID:
21875315. PMCID:
PMC8867953.
Article
7. Nestman TS, Marshall SD, Qian F, Holton N, Franciscus RG, Southard TE. 2011; Cervical vertebrae maturation method morphologic criteria: poor reproducibility. Am J Orthod Dentofacial Orthop. 140:182–8. DOI:
10.1016/j.ajodo.2011.04.013. PMID:
21803255.
Article
8. Makaremi M, Lacaule C, Mohammad-Djafari A. 2019; Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography. Entropy. 21:1222. DOI:
10.3390/e21121222. PMCID:
PMC7514567.
Article
9. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. 2021; Developments, application, and performance of artificial intelligence in dentistry - a systematic review. J Dent Sci. 16:508–22. DOI:
10.1016/j.jds.2020.06.019. PMID:
33384840. PMCID:
PMC7770297.
Article
10. Amasya H, Yildirim D, Aydogan T, Kemaloglu N, Orhan K. 2020; Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models. Dentomaxillofac Radiol. 49:20190441. DOI:
10.1259/dmfr.20190441. PMID:
32105499. PMCID:
PMC7333473.
Article
14. Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. 2021; Machine learning and orthodontics, current trends and the future opportunities: a scoping review. Am J Orthod Dentofacial Orthop. 160:170–92.e4. DOI:
10.1016/j.ajodo.2021.02.013. PMID:
34103190.
Article
15. Ravishankar H, Sudhakar P, Venkataramani R, Thiruvenkadam S, Annangi P, Babu N, et al. 2016. Understanding the mechanisms of deep transfer learning for medical images. Springer International Publishing;Cham: p. 188–96. DOI:
10.1007/978-3-319-46976-8_20.
17. Mongan J, Moy L, Kahn CE Jr. 2020; Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2:e200029. DOI:
10.1148/ryai.2020200029. PMID:
33937821. PMCID:
PMC8017414.
Article
18. Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, et al. 2016; A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal. 31:63–76. DOI:
10.1016/j.media.2016.02.004. PMID:
26974042.
Article
19. Landis JR, Koch GG. 1977; The measurement of observer agreement for categorical data. Biometrics. 33:159–74. DOI:
10.2307/2529310. PMID:
843571.
Article
20. Tajmir SH, Lee H, Shailam R, Gale HI, Nguyen JC, Westra SJ, et al. 2019; Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skeletal Radiol. 48:275–83. DOI:
10.1007/s00256-018-3033-2. PMID:
30069585.
Article
21. Graber LW, Vanarsdall RL Jr, Vig KWL, Huang GJ. 2016. Orthodontics: current principles and techniques. 6th ed. Elsevier;St. Louis:
22. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. 2020; Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 99:249–56. DOI:
10.1177/0022034520901715. PMID:
31977286.
Article
23. Amasya H, Cesur E, Yıldırım D, Orhan K. 2020; Validation of cervical vertebral maturation stages: artificial intelligence vs human observer visual analysis. Am J Orthod Dentofacial Orthop. 158:e173–9. DOI:
10.1016/j.ajodo.2020.08.014. PMID:
33250108.
Article
24. Yu Y, Lin H, Meng J, Wei X, Guo H, Zhao Z. 2017; Deep transfer learning for modality classification of medical images. Information. 8:91. DOI:
10.3390/info8030091.
Article
25. He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016 Jun 27-30; Las Vegas, USA. Institute of Electrical and Electronics Engineers;Piscataway: p. 770–8. DOI:
10.1109/CVPR.2016.90. PMID:
26180094.
Article
26. Wang W, Liang D, Chen Q, Iwamoto Y, Han XH, Zhang Q, et al. Chen YW, Jain LC, editors. 2020. Medical image classification using deep learning. Deep learning in healthcare: paradigms and applications. Springer;Cham: p. 33–51. DOI:
10.1007/978-3-030-32606-7_3.
Article
27. Shin HC, Tenenholtz NA, Rogers JK, Schwarz CG, Senjem ML, Gunter JL, et al. 2018. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. Springer International Publishing;Cham: p. 1–11. DOI:
10.1007/978-3-030-00536-8_1.
29. Ramentol E, Caballero Y, Bello R, Herrera F. 2012; SMOTE-RS
B*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl Inf Syst. 33:245–65. DOI:
10.1007/s10115-011-0465-6.
Article