Int J Stem Cells.  2022 Feb;15(1):3-13. 10.15283/ijsc21251.

Organoid Studies in COVID-19 Research

Affiliations
  • 1Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
  • 2Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
  • 3Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
  • 4Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands

Abstract

The current COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has completely changed human life for more than two years. Upon the emergence of this new lethal virus, multiple approaches were utilized to gain basic knowledge about its biology. Moreover, modern technologies, such as the organoid model system and next-generation sequencing, enabled us to rapidly establish strategies to tackle the disease, including vaccines and therapeutics. The recently developed organoid technology reflects human physiology more closely than other model systems. Coupled with its rapidness, high efficiency, and outstanding reliability, it has provided an opportunity to develop new drugs and understand the impact of the viral pathogen on the host. Recent findings using organoids have successfully revealed the cellular tropism of the virus in different organs and identified potential drug candidates that impact the disease. This review will summarize current achievements made with organoids in the fight against COVID-19.

Keyword

COVID-19; SARS-CoV-2; Organoid

Figure

  • Fig. 1 Overview of organoids on COVID-19 research.


Cited by  1 articles

Lo and Behold, the Lab-Grown Organs Have Arrived!
Jaesang Kim
Int J Stem Cells. 2022;15(1):1-2.    doi: 10.15283/ijsc22026.


Reference

References

1. WHO. 2022. Epidemic and Pandemic-prone Diseases [Internet]. World Health Organization;Cairo: Available from: http://www.emro.who.int/pandemic-epi-demic-diseases/outbreaks/index.html. cited 2022 Jan 12.
2. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020; A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. DOI: 10.1038/s41586-020-2012-7. PMID: 32015507. PMCID: PMC7095418.
Article
3. Zhong NS, Zheng BJ, Li YM, Xie ZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, Liu XQ, Xu J, Li DX, Yuen KY, Guan Y. Poon. Peiris. 2003; Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 362:1353–1358. DOI: 10.1016/S0140-6736(03)14630-2.
Article
4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012; Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 367:1814–1820. Erratum in: N Engl J Med 2013;369:394. DOI: 10.1056/NEJMoa1211721. PMID: 23075143.
Article
5. WHO. 2022. WHO Coronavirus (COVID-19) Dashboard [Internet]. World Health Organization;Geneva: cited 2022 Feb 1. Available from: https://covid19.who.int.
6. Johnson CK. 2021; Sep. 21. COVID Has Killed about as Many Americans as the 1918-19 Flu [Internet]. AP News;New York: cited 2021 Sep 21. Available from: https://apnews.com/article/science-health-pandemics-united-states-coronavirus-pandemic-c15d5c6dd7ece88d0832993f11279fbb. DOI: 10.1056/NEJMoa1211721,. PMID: 23075143.
7. Wang X, Xu G, Liu X, Liu Y, Zhang S, Zhang Z. 2021; Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cell Mol Immunol. 18:2313–2324. DOI: 10.1038/s41423-021-00754-0. PMID: 34471261. PMCID: PMC8408367.
Article
8. NIH. 2021. COVID-19 Treatment Guidelines - Remdesivir [Internet]. National Institutes of Health;Bethesda: cited 2021 Dec 16. Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/remdesivir/.
9. Merck. 2021. Oct. 1. Merck and Ridgeback's Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study [Internet]. Merck & Co.;Kenilworth: cited 2021 Oct 1. Available from: https://www.merck.com/news/merck-and-ridgebacks-inves-tigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approxim-ately-50-percent-compared-to-placebo-for-patients-with-mild-or-moderat/.
10. Ledford H. 2021. COVID Antiviral Pills: What Scientists Still Want to Know [Internet]. Springer Nature;Berlin:
11. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020; Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. Erratum in: Lancet 2020;395:496. DOI: 10.1016/S0140-6736(20)30183-5. PMID: 31986264. PMCID: PMC7159299.
Article
12. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2021; Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 19:155–170. DOI: 10.1038/s41579-020-00468-6. PMID: 33116300. PMCID: PMC7592455.
13. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–454. DOI: 10.1038/nature02145. PMID: 14647384. PMCID: PMC7095016.
Article
14. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pöhlmann S. 2011; Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 85:4122–4134. DOI: 10.1128/JVI.02232-10. PMID: 21325420. PMCID: PMC3126222.
Article
15. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010; Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 84:12658–12664. DOI: 10.1128/JVI.01542-10. PMID: 20926566. PMCID: PMC3004351.
Article
16. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011; A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 85:873–882. DOI: 10.1128/JVI.02062-10. PMID: 21068237. PMCID: PMC3020023.
Article
17. Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. 2021; SARS-CoV-2 infections in animals: reservoirs for reverse zoonosis and models for study. Viruses. 13:494. DOI: 10.3390/v13030494. PMID: 33802857. PMCID: PMC8002747. PMID: b98e15b1df15486d81ca894604d06a07.
Article
18. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. 2009; Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. DOI: 10.1038/nature07935. PMID: 19329995.
Article
19. Kim J, Koo BK, Knoblich JA. 2020; Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. DOI: 10.1038/s41580-020-0259-3. PMID: 32636524. PMCID: PMC7339799.
Article
20. Zhou J, Li C, Liu X, Chiu MC, Zhao X, Wang D, Wei Y, Lee A, Zhang AJ, Chu H, Cai JP, Yip CC, Chan IH, Wong KK, Tsang OT, Chan KH, Chan JF, To KK, Chen H, Yuen KY. 2020; Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 26:1077–1083. DOI: 10.1038/s41591-020-0912-6. PMID: 32405028.
Article
21. Post Y, Puschhof J, Beumer J, Kerkkamp HM, de Bakker MAG, Slagboom J, de Barbanson B, Wevers NR, Spijkers XM, Olivier T, Kazandjian TD, Ainsworth S, Iglesias CL, van de Wetering WJ, Heinz MC, van Ineveld RL, van Kleef RGDM, Begthel H, Korving J, Bar-Ephraim YE, Getreuer W, Rios AC, Westerink RHS, Snippert HJG, van Oudenaarden A, Peters PJ, Vonk FJ, Kool J, Richardson MK, Casewell NR, Clevers H. 2020; Snake venom gland organoids. Cell. 180:233–247.e21. DOI: 10.1016/j.cell.2019.11.038. PMID: 31978343.
Article
22. Weibel ER, Gomez DM. 1962; Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 137:577–585. DOI: 10.1126/science.137.3530.577. PMID: 14005590.
23. Duarte RRR, Copertino DC Jr, Iñiguez LP, Marston JL, Bram Y, Han Y, Schwartz RE, Chen S, Nixon DF, Powell TR. 2021; Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol Med. 27:105. DOI: 10.1186/s10020-021-00356-6. PMID: 34503440. PMCID: PMC8426591. PMID: bce76190279a4c49ad83ba37633ed9c4.
Article
24. Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, He J, Xiao S, Xiong J, Lin Y, Wen K, Zhou H, Chen J, Rong Z, Chen X. 2021; Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell. 12:717–733. DOI: 10.1007/s13238-020-00811-w. PMID: 33314005. PMCID: PMC7732737.
Article
25. Kim JH, Kim J, Kim WJ, Choi YH, Yang SR, Hong SH. 2020; Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of Sars-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. Int J Environ Res Public Health. 17:8410. DOI: 10.3390/ijerph17228410. PMID: 33202948. PMCID: PMC7696313. PMID: feabf0ef2d51437794b2bb686ef01fa3.
Article
26. Tiwari SK, Wang S, Smith D, Carlin AF, Rana TM. 2021; Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell-derived lung and cerebral organoids. Stem Cell Reports. 16:437–445. DOI: 10.1016/j.stemcr.2021.02.005. PMID: 33631122. PMCID: PMC7879814.
Article
27. Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P, Duan F, Tang X, Yaron TM, Zhang T, Uhl S, Bram Y, Richardson C, Zhu J, Zhao Z, Redmond D, Houghton S, Nguyen DT, Xu D, Wang X, Jessurun J, Borczuk A, Huang Y, Johnson JL, Liu Y, Xiang J, Wang H, Cantley LC, tenOever BR, Ho DD, Pan FC, Evans T, Chen HJ, Schwartz RE, Chen S. 2021; Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 589:270–275. DOI: 10.1038/s41586-020-2901-9. PMID: 33116299. PMCID: PMC8034380.
Article
28. Dobrindt K, Hoagland DA, Seah C, Kassim B, O'Shea CP, Murphy A, Iskhakova M, Fernando MB, Powell SK, Deans PJM, Javidfar B, Peter C, Møller R, Uhl SA, Garcia MF, Kimura M, Iwasawa K, Crary JF, Kotton DN, Takebe T, Huckins LM, tenOever BR, Akbarian S, Brennand KJ. 2021; Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. Stem Cell Reports. 16:505–518. DOI: 10.1016/j.stemcr.2021.02.010. PMID: 33636110. PMCID: PMC7881728.
Article
29. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS. 2020; Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720. DOI: 10.1056/NEJMoa2002032. PMID: 32109013. PMCID: PMC7092819.
Article
30. Samuel RM, Majd H, Richter MN, Ghazizadeh Z, Zekavat SM, Navickas A, Ramirez JT, Asgharian H, Simoneau CR, Bonser LR, Koh KD, Garcia-Knight M, Tassetto M, Sunshine S, Farahvashi S, Kalantari A, Liu W, Andino R, Zhao H, Natarajan P, Erle DJ, Ott M, Goodarzi H, Fattahi F. 2020; Androgen signaling regulates SARS-CoV-2 receptor levels and is associated with severe COVID-19 symptoms in men. Cell Stem Cell. 27:876–889.e12. DOI: 10.1016/j.stem.2020.11.009. PMID: 33232663. PMCID: PMC7670929.
Article
31. Varatharaj A, Thomas N, Ellul MA, Davies NWS, Pollak TA, Tenorio EL, Sultan M, Easton A, Breen G, Zandi M, Coles JP, Manji H, Al-Shahi Salman R, Menon DK, Nicholson TR, Benjamin LA, Carson A, Smith C, Turner MR, Solomon T, Kneen R, Pett SL, Galea I, Thomas RH, Michael BD. 2020; Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 7:875–882. Erratum in: Lancet Psychiatry 2020;7:e64. DOI: 10.2139/ssrn.3601761. PMID: 32593341. PMCID: PMC7316461.
32. Liotta EM, Batra A, Clark JR, Shlobin NA, Hoffman SC, Orban ZS, Koralnik IJ. 2020; Frequent neurologic manifestations and encephalopathy-associated morbidity in COVID-19 patients. Ann Clin Transl Neurol. 7:2221–2230. DOI: 10.1002/acn3.51210. PMID: 33016619. PMCID: PMC7664279. PMID: c86f7ea51a2647aa93e652696088aad1.
Article
33. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, Collange O, Boulay C, Fafi-Kremer S, Ohana M, Anheim M, Meziani F. 2020; Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 382:2268–2270. DOI: 10.1056/NEJMc2008597. PMID: 32294339. PMCID: PMC7179967.
Article
34. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, Ueno M, Sakata H, Kondo K, Myose N, Nakao A, Takeda M, Haro H, Inoue O, Suzuki-Inoue K, Kubokawa K, Ogihara S, Sasaki T, Kinouchi H, Kojin H, Ito M, Onishi H, Shimizu T, Sasaki Y, Enomoto N, Ishihara H, Furuya S, Yamamoto T, Shimada S. 2020; A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 94:55–58. DOI: 10.1016/j.ijid.2020.03.062. PMID: 32251791. PMCID: PMC7195378.
Article
35. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB. 2020; Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 383:590–592. DOI: 10.1056/NEJMc2011400. PMID: 32402155. PMCID: PMC7240771.
Article
36. Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, Adams G, Hornick JL, Padera RF Jr, Sabeti P. 2020; Neuropathological features of COVID-19. N Engl J Med. 383:989–992. DOI: 10.1056/NEJMc2019373. PMID: 32530583. PMCID: PMC7304421.
Article
37. Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. 2021; Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 218:e20202135. DOI: 10.1084/jem.20202135. PMID: 33433624. PMCID: PMC7808299.
Article
38. Yi SA, Nam KH, Yun J, Gim D, Joe D, Kim YH, Kim HJ, Han JW, Lee J. 2020; Infection of brain organoids and 2D cortical neurons with SARS-CoV-2 pseudovirus. Viruses. 12:1004. DOI: 10.3390/v12091004. PMID: 32911874. PMCID: PMC7551632. PMID: b409adfa63394995897cbf03a1745460.
Article
39. Zhang BZ, Chu H, Han S, Shuai H, Deng J, Hu YF, Gong HR, Lee AC, Zou Z, Yau T, Wu W, Hung IF, Chan JF, Yuen KY, Huang JD. 2020; SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 30:928–931. DOI: 10.1038/s41422-020-0390-x. PMID: 32753756. PMCID: PMC7399356.
Article
40. Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P, Müller-Schiffmann A, Mariappan A, Goureau O, Gruell H, Walker A, Andrée M, Hauka S, Houwaart T, Dilthey A, Wohlgemuth K, Omran H, Klein F, Wieczorek D, Adams O, Timm J, Korth C, Schaal H, Gopalakrishnan J. 2020; SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39:e106230. DOI: 10.15252/embj.2020106230. PMID: 32876341. PMCID: PMC7560208.
Article
41. Wang C, Zhang M, Garcia G Jr, Tian E, Cui Q, Chen X, Sun G, Wang J, Arumugaswami V, Shi Y. 2021; ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell. 28:331–342.e5. DOI: 10.1016/j.stem.2020.12.018. PMID: 33450186. PMCID: PMC7832490.
Article
42. Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Perez Y, Mostajo-Radji MA, Wang S, Velmeshev D, Salma J, Kumar GR, Pollen AA, Crouch EE, Ott M, Kriegstein AR. 2021. Tropism of SARS-CoV-2 for developing human cortical astrocytes. bioRxiv 427024 [Preprint]. Available from: https://doi.org/10.1101/2021.01.17.427024. cited 2021 Jan 18. DOI: 10.1101/2021.01.17.427024.
Article
43. Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GL. 2020; Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 27:937–950.e9. DOI: 10.1016/j.stem.2020.09.016. PMID: 33010822. PMCID: PMC7505550.
Article
44. Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D, Carter AP, James LC, Lancaster MA. 2020; SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell. 27:951–961.e5. DOI: 10.1016/j.stem.2020.10.001. PMID: 33113348. PMCID: PMC7553118.
Article
45. Wang L, Sievert D, Clark AE, Lee S, Federman H, Gastfriend BD, Shusta EV, Palecek SP, Carlin AF, Gleeson JG. 2021; A human three-dimensional neural-perivascular 'assembloid' promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med. 27:1600–1606. DOI: 10.1038/s41591-021-01443-1. PMID: 34244682. PMCID: PMC8601037.
Article
46. Poirier EZ, Buck MD, Chakravarty P, Carvalho J, Frederico B, Cardoso A, Healy L, Ulferts R, Beale R, Reis E Sousa C. 2021; An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science. 373:231–236. DOI: 10.1126/science.abg2264. PMID: 34244417. PMCID: PMC7611482.
Article
47. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020; SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. DOI: 10.1016/j.cell.2020.02.052. PMID: 32142651. PMCID: PMC7102627.
Article
48. Krüger J, Groß R, Conzelmann C, Müller JA, Koepke L, Sparrer KMJ, Weil T, Schütz D, Seufferlein T, Barth TFE, Stenger S, Heller S, Münch J, Kleger A. 2021; Drug inhibition of SARS-CoV-2 replication in human pluripotent stem cell-derived intestinal organoids. Cell Mol Gastroenterol Hepatol. 11:935–948. DOI: 10.1016/j.jcmgh.2020.11.003. PMID: 33186749. PMCID: PMC7655023.
Article
49. Mithal A, Hume AJ, Lindstrom-Vautrin J, Villacorta-Martin C, Olejnik J, Bullitt E, Hinds A, Mühlberger E, Mostoslavsky G. 2021; Human pluripotent stem cell-derived intestinal organoids model SARS-CoV-2 infection revealing a common epithelial inflammatory response. Stem Cell Reports. 16:940–953. DOI: 10.1016/j.stemcr.2021.02.019. PMID: 33852884. PMCID: PMC8042780.
Article
50. Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Krüger J, Schütz D, Heller S, Stürzel CM, Kmiec D, Conzelmann C, Müller J, Zech F, Braun E, Groß R, Wettstein L, Weil T, Weiß J, Diofano F, Rodríguez Alfonso AA, Wiese S, Sauter D, Münch J, Goffinet C, Catanese A, Schön M, Boeckers TM, Stenger S, Sato K, Just S, Kleger A, Sparrer KMJ, Kirchhoff F. 2021; IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun. 12:4584. DOI: 10.1038/s41467-021-24817-y. PMID: 34321474. PMCID: PMC8319209. PMID: 45486c77950d4620853ea7ad4237e600.
Article
51. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM. 2020; Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 181:905–913.e7. DOI: 10.1016/j.cell.2020.04.004. PMID: 32333836. PMCID: PMC7181998.
Article
52. Monteil V, Dyczynski M, Lauschke VM, Kwon H, Wirnsberger G, Youhanna S, Zhang H, Slutsky AS, Hurtado Del Pozo C, Horn M, Montserrat N, Penninger JM, Mirazimi A. 2021; Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol Med. 13:e13426. DOI: 10.15252/emmm.202013426. PMID: 33179852. PMCID: PMC7799356. PMID: 07998970104b4c38b5f25f0f58d1b221.
Article
53. Wysocki J, Ye M, Hassler L, Gupta AK, Wang Y, Nicoleascu V, Randall G, Wertheim JA, Batlle D. 2021; A novel soluble ACE2 variant with prolonged duration of action neutralizes SARS-CoV-2 infection in human kidney organoids. J Am Soc Nephrol. 32:795–803. DOI: 10.1681/ASN.2020101537. PMID: 33526471. PMCID: PMC8017551.
Article
54. Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. 2021; The new generation hDHODH inhibitor MEDS433 hinders the in vitro replication of SARS-CoV-2 and other human coronaviruses. Microorganisms. 9:1731. DOI: 10.3390/microorganisms9081731. PMID: 34442810. PMCID: PMC8398173. PMID: 258bb6e07d254f5192a8e4e2f68eb885.
Article
55. Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, Jheng YC, Wang ML, Chiou SH, Chou YB, Hwang DK, Lin TC, Chen SJ, Yang YP. 2021; Expression of endogenous angiotensin-converting enzyme 2 in human induced pluripotent stem cell-derived retinal organoids. Int J Mol Sci. 22:1320. DOI: 10.3390/ijms22031320. PMID: 33525682. PMCID: PMC7865454. PMID: dab18b80656047598413247a9e2e0e1b.
Article
56. Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffré F, Zhang T, Kim TW, Harschnitz O, Redmond D, Houghton S, Liu C, Naji A, Ciceri G, Guttikonda S, Bram Y, Nguyen DT, Cioffi M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Borczuk A, Chen HJ, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. 2020; A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 27:125–136.e7. DOI: 10.1016/j.stem.2020.06.015. PMID: 32579880. PMCID: PMC7303620.
Article
57. Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar GD, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. 2021; Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. Elife. 10:e66417. DOI: 10.7554/eLife.66417. PMID: 34463615. PMCID: PMC8463074. PMID: a2f6ea2e6df643eab8feb143e8860634.
Article
58. Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D, Motooka D, Minami S, Kobayashi T, Yamamoto T, Okamoto T, Takayama K. 2020. Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv 115600 [Preprint]. Available from: https://doi.org/10.1101/2020.05.25.115600. cited 2020 May 28. DOI: 10.1101/2020.05.25.115600.
Article
59. Hysenaj L, Little S, Kulhanek K, Gbenedio OM, Rodriguez L, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Bahl K, Mick E, Li JZ, Ding VW, Matsumoto S, Maishan M, Simoneau C, Fragiadakis G, Jablons DM, Langelier CR, Matthay M, Ott M, Krummel M, Combes AJ, Sil A, Erle DJ, Kratz JR, Roose JP. 2021. SARS-CoV-2 infection studies in lung organoids identify TSPAN8 as novel mediator. bioRxiv 446640 [Preprint]. Available from: https://doi.org/10.1101/2021.06.01.446640. cited 2021 Jun 2. DOI: 10.1101/2021.06.01.446640.
Article
60. Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la O SM, Flynn RA, Margalef-Català M, Santos AJM, Ju J, Batish A, Usui T, Zheng GXY, Edwards CE, Wagar LE, Luca V, Anchang B, Nagendran M, Nguyen K, Hart DJ, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Harbury PB, Glenn JS, Garcia KC, Davis MM, Baric RS, Sabatti C, Amieva MR, Blish CA, Desai TJ, Kuo CJ. 2020; Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature. 588:670–675. DOI: 10.1038/s41586-020-3014-1. PMID: 33238290. PMCID: PMC8003326.
Article
61. Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal A, Gupta RK. Indian SARS-CoV-2 Genomics Consortium (INSACOG). Genotype to Phenotype Japan (G2P-Japan) Consortium. CITIID-NIHR BioResource COVID-19 Collaboration. 2021; SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 599:114–119. DOI: 10.1038/s41586-021-03944-y. PMID: 34488225. PMCID: PMC8566220.
62. Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB, Rottier RJ, Lamers MM, Haagmans BL. 2021; SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife. 10:e64508. DOI: 10.7554/eLife.64508. PMID: 33393462. PMCID: PMC7806259. PMID: bff5e7cfb4864de5a79908ccfb16e14b.
Article
63. Ebisudani T, Sugimoto S, Haga K, Mitsuishi A, Takai-Todaka R, Fujii M, Toshimitsu K, Hamamoto J, Sugihara K, Hishida T, Asamura H, Fukunaga K, Yasuda H, Katayama K, Sato T. 2021; Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Rep. 35:109218. DOI: 10.1016/j.celrep.2021.109218. PMID: 34038715. PMCID: PMC8133488.
Article
64. Lamers MM, Mykytyn AZ, Breugem TI, Wang Y, Wu DC, Riesebosch S, van den Doel PB, Schipper D, Bestebroer T, Wu NC, Haagmans BL. 2021; Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. Elife. 10:e66815. DOI: 10.7554/eLife.66815. PMID: 33835028. PMCID: PMC8131099. PMID: 3d0c2b13478f4404ae22e956acd8b062.
Article
65. Cheemarla NR, Watkins TA, Mihaylova VT, Wang B, Zhao D, Wang G, Landry ML, Foxman EF. 2021; Magnitude and timing of the antiviral response determine SARS-CoV-2 replication early in infection. medRxiv [Preprint]. 2021 [cited 2021 Jan 27]. Available from: https://doi.org/10.1101/2021.01.22.21249812. Update in:. J Exp Med. 218:e20210583.
66. Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D, Bezstarosti K, Koopman CD, Groen N, Ravelli RBG, Duimel HQ, Demmers JAA, Verjans GMGM, Koopmans MPG, Muraro MJ, Peters PJ, Clevers H, Haagmans BL. 2021; An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 40:e105912. DOI: 10.15252/embj.2020105912. PMID: 33283287. PMCID: PMC7883112.
Article
67. Youk J, Kim T, Evans KV, Jeong YI, Hur Y, Hong SP, Kim JH, Yi K, Kim SY, Na KJ, Bleazard T, Kim HM, Fellows M, Mahbubani KT, Saeb-Parsy K, Kim SY, Kim YT, Koh GY, Choi BS, Ju YS, Lee JH. 2020; Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell. 27:905–919.e10. DOI: 10.1016/j.stem.2020.10.004. PMID: 33142113. PMCID: PMC7577700.
Article
68. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H. 2020; SARS-CoV-2 productively infects human gut enterocytes. Science. 369:50–54. DOI: 10.1126/science.abc1669. PMID: 32358202. PMCID: PMC7199907.
Article
69. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. 2020; TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 5:eabc3582. DOI: 10.1126/sciimmunol.abc3582. PMID: 32404436. PMCID: PMC7285829.
Article
70. Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, Mukenhirn M, Kraeusslich HG, Alexandrov T, Bartenschlager R, Boulant S. 2020; Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep. 32:107863. DOI: 10.1016/j.celrep.2020.107863. PMID: 32610043. PMCID: PMC7303637.
Article
71. Heuberger J, Trimpert J, Vladimirova D, Goosmann C, Lin M, Schmuck R, Mollenkopf HJ, Brinkmann V, Tacke F, Osterrieder N, Sigal M. 2021; Epithelial response to IFN-γ promotes SARS-CoV-2 infection. EMBO Mol Med. 13:e13191. DOI: 10.15252/emmm.202013191. PMID: 33544398. PMCID: PMC7995094. PMID: 5396e49c30f44e5e8e0a119b1c47a08f.
Article
72. Kulkarni AV, Kumar P, Tevethia HV, Premkumar M, Arab JP, Candia R, Talukdar R, Sharma M, Qi X, Rao PN, Reddy DN. 2020; Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 52:584–599. DOI: 10.1111/apt.15916. PMID: 32638436. PMCID: PMC7361465.
Article
73. Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, Lv T, Liang J, Zhang Q, Xu W, Xie Y, Wang X, Yuan Z, Liang J, Zhang R, Lin X. 2020; Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell. 11:771–775. DOI: 10.1007/s13238-020-00718-6. PMID: 32303993. PMCID: PMC7164704. PMID: 69cc8f9c068a4ed1be2a77d9baab1853.
Article
74. Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, Mallajosyula V, Jatt LP, Adamska JZ, Blum LK, Gupta N, Jackson KJL, Yang F, Röltgen K, Roskin KM, Blaine KM, Meister KD, Ahmad IN, Cortese M, Dora EG, Tucker SN, Sperling AI, Jain A, Davies DH, Felgner PL, Hammer GB, Kim PS, Robinson WH, Boyd SD, Kuo CJ, Davis MM. 2021; Modeling human adaptive immune responses with tonsil organoids. Nat Med. 27:125–135. DOI: 10.1038/s41591-020-01145-0. PMID: 33432170. PMCID: PMC7891554.
Article
75. Saul S, Karim M, Huang PT, Ghita L, Chiu W, Kumar S, Bhalla N, Leyssen P, Cohen CA, Huie K, Tindle C, Sibai M, Pinsky BA, Das S, Ghosh P, Dye JM, Solow-Cordero DE, Jin J, Jochmans D, Neyts J, Narayanan A, De Jonghe S, Einav S. 2021. Discovery of pan-ErbB inhibitors protecting from SARS-CoV-2 replication, inflammation, and lung injury by a drug repurposing screen. bioRxiv 444128 [Preprint]. Available from: https://doi.org/10.1101/2021.05.15.444128. cited 2021 Jun 15. DOI: 10.1101/2021.05.15.444128.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr