1. Park YT, Kim YS, Yi BK, Kim SM. Clinical decision support functions and digitalization of clinical documents of electronic medical record systems. Healthc Inform Res. 2019; 25(2):115–23.
Article
2. Choi YI, Park SJ, Chung JW, Kim KO, Cho JH, et al. Development of machine learning model to predict the 5-year risk of starting biologic agents in patients with inflammatory bowel disease (IBD): K-CDM network study. J Clin Med. 2020; 9(11):3427.
Article
3. Seong D, Yi BK. Research trends in clinical natural language processing. Commun Korean Inst Inf Sci Eng. 2017; 35(5):20–6.
4. Shin SY. Privacy protection and data utilization. Healthc Inform Res. 2021; 27(1):1–2.
Article
6. Shin SY, Park YR, Shin Y, Choi HJ, Park J, Lyu Y, et al. A de-identification method for bilingual clinical texts of various note types. J Korean Med Sci. 2015; 30(1):7–15.
Article
7. Lafferty J, McCallum A, Pereira FC. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In : Proceedings of the 18th International Conference on Machine Learning (ICML); 2001 Jun 28–Jul 1; San Francisco, CA. p. 282–9.
8. Wang Y. Annotating and recognising named entities in clinical notes. In : Proceedings of the ACL-IJCNLP 2009 Student Research Workshop; 2009 Aug 4; Suntec, Singapore. p. 18–26.
Article
9. Dreyfus SE. Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure. J Guid Control Dyn. 1990; 13(5):926–8.
Article
10. Team AI Korea. Recurrent neural network (RNN) tutorial, Part 1 [Internet]. [place unknow]: Team AI Korea;2015. [cited at 2022 Jan 10]. Available from:
http://aikorea.org/blog/rnn-tutorial-1/
.
11. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997; 9(8):1735–80.
Article
12. Liu Z, Yang M, Wang X, Chen Q, Tang B, Wang Z, et al. Entity recognition from clinical texts via recurrent neural network. BMC Med Inform Decis Mak. 2017; 17(Suppl 2):67.
Article
13. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space [Internet]. Ithaca (NY): arXiv.org;2013. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1301.3781
.
14. fastText [Internet]. Menlo Park (CA): Facebook Inc.;2020. [cited at 2022 Jan 10]. Available from:
https://fast-text.cc/
.
15. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. Deep contextualized word representations [Internet]. Ithaca (NY): arXiv.org;2018. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1802.05365
.
16. Kim JM, Lee JH. Text document classification based on recurrent neural network using word2vec. J Korean Inst Intell Syst. 2017; 27(6):560–5.
Article
17. Stubbs A, Kotfila C, Uzuner O. Automated systems for the de-identification of longitudinal clinical narratives: overview of 2014i2b2/UTHealth shared task Track 1. J Biomed Inform. 2015; 58 Suppl. (Suppl):S11–S19.
19. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding [Internet]. Ithaca (NY): arXiv.org;2018. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1810.04805
.
Article
20. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. ALBERT: a lite BERT for self-supervised learning of language representations. In : Proceedings of the 8th International Conference on Learning Representations (ICLR); 2020 Apr 26–30; Addis Ababa, Ethiopia.
21. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. ROBERTa: a robustly optimized BERT pretraining approach [Internet]. Ithaca (NY): arXiv.org;2019. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1907.11692
.
23. Kingma DP, Ba J. Adam: a method for stochastic optimization [Internet]. Ithaca (NY): arXiv.org;2014. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1412.6980
.
24. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV. Xlnet: generalized autoregressive pretraining for language understanding. Adv Neural Inf Process Syst. 2019; 32:5754–64.
26. Warby SC, Wendt SL, Welinder P, Munk EG, Carrillo O, Sorensen HB, et al. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat Methods. 2014; 11(4):385–92.
Article
27. Kim YW, Cho N, Jang HJ. Trends in Research on the security of medical information in Korea: focused on information privacy security in hospitals. Healthc Inform Res. 2018; 24(1):61–8.
Article
28. Kingma DP, Welling M. Auto-encoding variational bayes [Internet]. Ithaca (NY): arXiv.org;2013. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1312.6114
.
29. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf Process Syst. 2014; 27:2672–80.
30. Alsentzer E, Murphy JR, Boag W, Weng WH, Jin D, Naumann T, et al. Publicly available clinical BERT embeddings [Internet]. Ithaca (NY): arXiv.org;2019. [cited at 2022 Jan 10]. Available from:
https://arxiv.org/abs/1904.03323
.