1. Guth S, Theune U, Aberle J, Galach A, Bamberger CM. 2009; Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest. 39:699–706. DOI:
10.1111/j.1365-2362.2009.02162.x. PMID:
19601965.
Article
3. Cancer today: data visualization tools for exploring the global cancer burden in 2020 [Internet]. International Agency for Research on Cancer;Lyon: Available from: http://gco.iarc.fr/today/home. cited 2021 Mar 22.
4. National Cancer Information Center [Internet]. National Cancer Information Center;Goyang: Available from: https://www.cancer.go.kr. cited 2021 Mar 22.
6. Chammas MC, Gerhard R, de Oliveira IR, Widman A, de Barros N, Durazzo M, et al. 2005; Thyroid nodules: evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol Head Neck Surg. 132:874–82. DOI:
10.1016/j.otohns.2005.02.003. PMID:
15944558.
Article
7. Russ G, Bigorgne C, Royer B, Rouxel A, Bienvenu-Perrard M. 2011; [The Thyroid Imaging Reporting and Data System (TIRADS) for ultrasound of the thyroid]. J Radiol. 92:701–13. French. DOI:
10.1016/j.jradio.2011.03.022. PMID:
21819912.
10. Merino S, Arrazola J, Cárdenas A, Mendoza M, De Miguel P, Fernández C, et al. 2011; Utility and interobserver agreement of ultrasound elastography in the detection of malignant thyroid nodules in clinical care. AJNR Am J Neuroradiol. 32:2142–8. DOI:
10.3174/ajnr.A2716. PMID:
22051809. PMCID:
PMC7964425.
Article
11. Ragazzoni F, Deandrea M, Mormile A, Ramunni MJ, Garino F, Magliona G, et al. 2012; High diagnostic accuracy and interobserver reliability of real-time elastography in the evaluation of thyroid nodules. Ultrasound Med Biol. 38:1154–62. DOI:
10.1016/j.ultrasmedbio.2012.02.025. PMID:
22542262.
Article
12. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. 1991; Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 13:111–34. DOI:
10.1177/016173469101300201. PMID:
1858217.
Article
14. Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, et al. 2008; US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 18:523–31. DOI:
10.1089/thy.2007.0323. PMID:
18466077.
Article
15. Rago T, Vitti P, Chiovato L, Mazzeo S, De Liperi A, Miccoli P, et al. 1998; Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in 'cold' thyroid nodules. Eur J Endocrinol. 138:41–6. DOI:
10.1530/eje.0.1380041. PMID:
9461314.
Article
16. Bojunga J, Herrmann E, Meyer G, Weber S, Zeuzem S, Friedrich-Rust M. 2010; Real-time elastography for the differentia-tion of benign and malignant thyroid nodules: a meta-analysis. Thyroid. 20:1145–50. DOI:
10.1089/thy.2010.0079. PMID:
20860422.
Article
17. Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY. 2012; Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology. 262:1002–13. DOI:
10.1148/radiol.11110839. PMID:
22357900.
Article
18. Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, et al. 2015; Thyroid nodules and shear wave elastography: a new tool in thyroid cancer detection. Ultrasound Med Biol. 41:2855–65. DOI:
10.1016/j.ultrasmedbio.2015.06.021. PMID:
26277203.
Article
19. Moraes PHM, Sigrist R, Takahashi MS, Schelini M, Chammas MC. 2019; Ultrasound elastography in the evaluation of thyroid nodules: evolution of a promising diagnostic tool for predicting the risk of malignancy. Radiol Bras. 52:247–53. DOI:
10.1590/0100-3984.2018.0084. PMID:
31435087. PMCID:
PMC6696751.
Article
20. Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F, et al. 2013; EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 34:169–84. DOI:
10.1055/s-0033-1335205. PMID:
23558397.
Article
21. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH, et al. 2013; EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 34:238–53. DOI:
10.1055/s-0033-1335375. PMID:
23605169.
22. Friedrich-Rust M, Romenski O, Meyer G, Dauth N, Holzer K, Grünwald F, et al. 2012; Acoustic radiation force impulse-imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics. 52:69–74. DOI:
10.1016/j.ultras.2011.06.012. PMID:
21788057.
Article
24. Gu J, Du L, Bai M, Chen H, Jia X, Zhao J, et al. 2012; Preliminary study on the diagnostic value of acoustic radiation force impulse technology for differentiating between benign and malignant thyroid nodules. J Ultrasound Med. 31:763–71. DOI:
10.7863/jum.2012.31.5.763. PMID:
22535724.
Article
25. Dong FJ, Li M, Jiao Y, Xu JF, Xiong Y, Zhang L, et al. 2015; Acoustic radiation force impulse imaging for detecting thyroid nodules: a systematic review and pooled meta-analysis. Med Ultrason. 17:192–9. DOI:
10.11152/mu.2013.2066.172.hyr. PMID:
26052570.
Article
27. Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, et al. 2010; Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 95:5281–8. DOI:
10.1210/jc.2010-0766. PMID:
20881263.
Article
28. Veyrieres JB, Albarel F, Lombard JV, Berbis J, Sebag F, Oliver C, et al. 2012; A threshold value in Shear Wave elastography to rule out malignant thyroid nodules: a reality? Eur J Radiol. 81:3965–72. DOI:
10.1016/j.ejrad.2012.09.002. PMID:
23031543.
Article
29. Kim H, Kim JA, Son EJ, Youk JH. 2013; Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol. 23:2532–7. DOI:
10.1007/s00330-013-2847-5. PMID:
23604801.
Article
30. Kim HJ, Kwak MK, Choi IH, Jin SY, Park HK, Byun DW, et al. 2019; Utility of shear wave elastography to detect papillary thyroid carcinoma in thyroid nodules: efficacy of the standard deviation elasticity. Korean J Intern Med. 34:850–7. DOI:
10.3904/kjim.2016.326. PMID:
29466846. PMCID:
PMC6610177.
Article
31. Liu Z, Jing H, Han X, Shao H, Sun YX, Wang QC, et al. 2017; Shear wave elastography combined with the thyroid imaging reporting and data system for malignancy risk stratification in thyroid nodules. Oncotarget. 8:43406–16. DOI:
10.18632/oncotarget.15018. PMID:
28160573. PMCID:
PMC5522156.
Article
32. Duan SB, Yu J, Li X, Han ZY, Zhai HY, Liang P. 2016; Diagnostic value of two-dimensional shear wave elastography in papillary thyroid microcarcinoma. Onco Targets Ther. 9:1311–7. DOI:
10.2147/OTT.S98583. PMID:
27022286. PMCID:
PMC4790519.
33. Dobruch-Sobczak K, Guminska A, Bakuła-Zalewska E, Mlosek K, Słapa RZ, Wareluk P, et al. 2015; Shear wave elastography in medullary thyroid carcinoma diagnostics. J Ultrason. 15:358–67. DOI:
10.15557/JoU.2015.0033. PMID:
26807293. PMCID:
PMC4710687.
34. Xu HX, Yan K, Liu BJ, Liu WY, Tang LN, Zhou Q, et al. 2019; Guidelines and recommendations on the clinical use of shear wave elastography for evaluating thyroid nodule1. Clin Hemorheol Microcirc. 72:39–60. DOI:
10.3233/CH-180452. PMID:
30320562.
Article
35. Kanagaraju V, Rakshith AVB, Devanand B, Rajakumar R. 2019; Utility of ultrasound elastography to differentiate benign from malignant cervical lymph nodes. J Med Ultrasound. 28:92–8. DOI:
10.4103/JMU.JMU_72_19. PMID:
32874867. PMCID:
PMC7446693.
Article
36. Han RJ, Du J, Li FH, Zong HR, Wang JD, Shen YL, et al. 2019; Comparisons and combined application of two-dimensional and three-dimensional real-time shear wave elastography in diagnosis of thyroid nodules. J Cancer. 10:1975–84. DOI:
10.7150/jca.30135. PMID:
31205557. PMCID:
PMC6548166.
Article