Cancer Res Treat.  2022 Jan;54(1):226-233. 10.4143/crt.2021.365.

The Prognosis and the Role of Adjuvant Chemotherapy for Node-Positive Bladder Cancer Treated with Neoadjuvant Chemotherapy Followed by Surgery

Affiliations
  • 1Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • 2Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • 3Department of Internal Medicine Division of Oncology, Haeundae Paik Hospital Cancer Center, Inje University College of Medicine, Busan, Korea
  • 4Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
  • 5Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract

Purpose
This study aims to evaluate the prognosis of pathologically node-positive bladder cancer after neoadjuvant chemotherapy, the role of adjuvant chemotherapy in these patients, and the value of preoperative clinical evaluation for lymph node metastases.
Materials and Methods
Patients who received neoadjuvant chemotherapy followed by partial/radical cystectomy and had pathologically confirmed lymph node metastases between January 2007 and December 2019 were identified and analyzed.
Results
A total of 53 patients were included in the study. The median age was 61 years (range, 34 to 81 years) with males comprising 86.8%. Among the 52 patients with post-neoadjuvant/pre-operative computed tomography results, only 33 patients (63.5%) were considered positive for lymph node metastasis. Sixteen patients (30.2%) received adjuvant chemotherapy (AC group), and 37 patients did not (no AC group). With the median follow-up duration of 67.7 months, the median recurrence-free survival (RFS) and the median overall survival (OS) was 8.5 months and 16.2 months, respectively. The 2-year RFS and OS rates were 23.3% and 34.6%, respectively. RFS and OS did not differ between the AC group and no AC group (median RFS, 8.8 months vs. 6.8 months, p=0.772; median OS, 16.1 months vs. 16.3 months, p=0.479). Thirty-eight patients (71.7%) experienced recurrence. Distant metastases were the dominant pattern of failure in both the AC group (91.7%) and no AC group (76.9%).
Conclusion
Patients with lymph node-positive disease after neoadjuvant chemotherapy followed by surgery showed high recurrence rates with limited survival outcomes. Little benefit was observed with the addition of adjuvant chemotherapy.

Keyword

Urinary bladder neoplasms; Neoadjuvant therapy; Chemotherapy; Adjuvant; Lymph node metastasis

Figure

  • Fig. 1 Kaplan-Meier plot: (A) recurrence-free survival and overall survival in the entire study population, (B) recurrence-free survival by adjuvant chemotherapy, (C) overall survival by adjuvant chemotherapy. Numbers shown in parentheses indicate a 95% confidence interval.


Reference

References

1. Grossman HB, Natale RB, Tangen CM, Speights VO, Vogel-zang NJ, Trump DL, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003; 349:859–66.
Article
2. Sui W, Lim EA, Joel Decastro G, McKiernan JM, Anderson CB. Use of adjuvant chemotherapy in patients with advanced bladder cancer after neoadjuvant chemotherapy. Bladder Cancer. 2017; 3:181–9.
Article
3. Herr HW, Faulkner JR, Grossman HB, Natale RB, deVere White R, Sarosdy MF, et al. Surgical factors influence bladder cancer outcomes: a cooperative group report. J Clin Oncol. 2004; 22:2781–9.
Article
4. Cha EK, Sfakianos JP, Sukhu R, Yee AM, Sjoberg DD, Bochner BH. Poor prognosis of bladder cancer patients with occult lymph node metastases treated with neoadjuvant chemotherapy. BJU Int. 2018; 122:627–32.
Article
5. Galsky MD, Stensland KD, Moshier E, Sfakianos JP, McBride RB, Tsao CK, et al. Effectiveness of adjuvant chemotherapy for locally advanced bladder cancer. J Clin Oncol. 2016; 34:825–32.
Article
6. Seisen T, Jamzadeh A, Leow JJ, Roupret M, Cole AP, Lipsitz SR, et al. Adjuvant chemotherapy vs observation for patients with adverse pathologic features at radical cystectomy previously treated with neoadjuvant chemotherapy. JAMA Oncol. 2018; 4:225–9.
Article
7. Zargar-Shoshtari K, Kongnyuy M, Sharma P, Fishman MN, Gilbert SM, Poch MA, et al. Clinical role of additional adjuvant chemotherapy in patients with locally advanced urothelial carcinoma following neoadjuvant chemotherapy and cystectomy. World J Urol. 2016; 34:1567–73.
Article
8. Martinez Chanza N, Werner L, Plimack E, Yu EY, Alva AS, Crabb SJ, et al. Incidence, patterns, and outcomes with adjuvant chemotherapy for residual disease after neoadjuvant chemotherapy in muscle-invasive urinary tract cancers. Eur Urol Oncol. 2020; 3:671–9.
Article
9. Hwang EC, Sathianathen NJ, Imamura M, Kuntz GM, Risk MC, Dahm P. Extended versus standard lymph node dissection for urothelial carcinoma of the bladder in patients undergoing radical cystectomy. Cochrane Database Syst Rev. 2019; 5:CD013336.
Article
10. McMahon CJ, Rofsky NM, Pedrosa I. Lymphatic metastases from pelvic tumors: anatomic classification, characterization, and staging. Radiology. 2010; 254:31–46.
Article
11. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al. AJCC cancer staging manual. 8th ed. New York: Springer;2017.
12. Kassouf W, Agarwal PK, Grossman HB, Leibovici D, Munsell MF, Siefker-Radtke A, et al. Outcome of patients with bladder cancer with pN+ disease after preoperative chemotherapy and radical cystectomy. Urology. 2009; 73:147–52.
Article
13. Donat SM, Shabsigh A, Savage C, Cronin AM, Bochner BH, Dalbagni G, et al. Potential impact of postoperative early complications on the timing of adjuvant chemotherapy in patients undergoing radical cystectomy: a high-volume tertiary cancer center experience. Eur Urol. 2009; 55:177–85.
Article
14. Bajorin DF, Witjes JA, Gschwend J, Schenker M, Valderrama BP, Tomita Y, et al. First results from the phase 3 CheckMate 274 trial of adjuvant nivolumab vs placebo in patients who underwent radical surgery for high-risk muscle-invasive urothelial carcinoma (MIUC). J Clin Oncol. 2021; 39(6_Suppl):391.
Article
15. Wright JL, Lin DW, Porter MP. The association between extent of lymphadenectomy and survival among patients with lymph node metastases undergoing radical cystectomy. Cancer. 2008; 112:2401–8.
Article
16. Jensen JB, Ulhoi BP, Jensen KM. Extended versus limited lymph node dissection in radical cystectomy: impact on recurrence pattern and survival. Int J Urol. 2012; 19:39–47.
Article
17. Gschwend JE, Heck MM, Lehmann J, Rubben H, Albers P, Wolff JM, et al. Extended versus limited lymph node dissection in bladder cancer patients undergoing radical cystectomy: survival results from a prospective, randomized trial. Eur Urol. 2019; 75:604–11.
18. S1011 standard or extended pelvic lymphadenectomy in treating patients undergoing surgery for invasive bladder cancer [Internet]. Bethesda, MD: US National Library of Medicine;2010. [cited 2021 Mar 2]. Available from: https://ClinicalTrials.gov/show/NCT01224665 .
19. Zaghloul MS, Christodouleas JP, Smith A, Abdallah A, William H, Khaled HM, et al. Adjuvant sandwich chemotherapy plus radiotherapy vs adjuvant chemotherapy alone for locally advanced bladder cancer after radical cystectomy: a randomized phase 2 trial. JAMA Surg. 2018; 153:e174591.
20. Iwata T, Kimura S, Abufaraj M, Janisch F, Karakiewicz PI, Seebacher V, et al. The role of adjuvant radiotherapy after surgery for upper and lower urinary tract urothelial carcinoma: A systematic review. Urol Oncol. 2019; 37:659–71.
Article
21. Mehrsai A, Mansoori D, Taheri Mahmoudi M, Sina A, Seraji A, Pourmand GH. A comparison between clinical and pathologic staging in patients with bladder cancer. Urol J. 2004; 1:85–9.
22. Husband JE. Computer tomography and magnetic resonance imaging in the evaluation of bladder cancer. J Belge Radiol. 1995; 78:350–5.
23. Horn T, Zahel T, Adt N, Schmid SC, Heck MM, Thalgott MK, et al. Evaluation of computed tomography for lymph node staging in bladder cancer prior to radical cystectomy. Urol Int. 2016; 96:51–6.
Article
24. Paik ML, Scolieri MJ, Brown SL, Spirnak JP, Resnick MI. Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol. 2000; 163:1693–6.
Article
25. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology. 2014; 273:125–35.
Article
26. Mir N, Sohaib SA, Collins D, Koh DM. Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol. 2010; 54:358–64.
27. Sweeney P, Millikan R, Donat M, Wood CG, Radtke AS, Pettaway CA, et al. Is there a therapeutic role for post-chemotherapy retroperitoneal lymph node dissection in metastatic transitional cell carcinoma of the bladder? J Urol. 2003; 169:2113–7.
Article
28. Otto T, Krege S, Suhr J, Rubben H. Impact of surgical resection of bladder cancer metastases refractory to systemic therapy on performance score: a phase II trial. Urology. 2001; 57:55–9.
Article
29. Ho PL, Willis DL, Patil J, Xiao L, Williams SB, Melquist JJ, et al. Outcome of patients with clinically node-positive bladder cancer undergoing consolidative surgery after preoperative chemotherapy: The M.D. Anderson Cancer Center Experience. Urol Oncol. 2016; 34:59.
Article
30. Dodd PM, McCaffrey JA, Herr H, Mazumdar M, Bacik J, Higgins G, et al. Outcome of postchemotherapy surgery after treatment with methotrexate, vinblastine, doxorubicin, and cisplatin in patients with unresectable or metastatic transitional cell carcinoma. J Clin Oncol. 1999; 17:2546–52.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr