1. Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020; 21(11):e13128. PMID:
32845580.
Article
2. Kompaniyets L, Goodman AB, Belay B, Freedman DS, Sucosky MS, Lange SJ, et al. Body mass index and risk for COVID-19-related hospitalization, intensive care unit admission, invasive mechanical ventilation, and death - United States, March–December 2020. MMWR Morb Mortal Wkly Rep. 2021; 70(10):355–361. PMID:
33705371.
Article
3. Louie JK, Acosta M, Samuel MC, Schechter R, Vugia DJ, Harriman K, et al. A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A (H1N1). Clin Infect Dis. 2011; 52(3):301–312. PMID:
21208911.
Article
4. Al-Tawfiq JA, Hinedi K, Ghandour J, Khairalla H, Musleh S, Ujayli A, et al. Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis. 2014; 59(2):160–165. PMID:
24723278.
Article
5. Kim KS, Lee YM, Kim SG, Lee IK, Lee HJ, Kim JH, et al. Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere. 2014; 94:151–157. PMID:
24161582.
Article
6. Moon HB, Lee DH, Lee YS, Choi M, Choi HG, Kannan K. Polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in adipose tissues of Korean women. Arch Environ Contam Toxicol. 2012; 62(1):176–184. PMID:
21594673.
Article
7. Lee DH, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014; 35(4):557–601. PMID:
24483949.
Article
8. Geens T, Neels H, Covaci A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere. 2012; 87(7):796–802. PMID:
22277880.
Article
9. Moon HB, Lee DH, Lee YS, Kannan K. Occurrence and accumulation patterns of polycyclic aromatic hydrocarbons and synthetic musk compounds in adipose tissues of Korean females. Chemosphere. 2012; 86(5):485–490. PMID:
22055311.
Article
10. De Jong WH, Van Loveren H. Screening of xenobiotics for direct immunotoxicity in an animal study. Methods. 2007; 41(1):3–8. PMID:
17161297.
Article
11. Luster MI. A historical perspective of immunotoxicology. J Immunotoxicol. 2014; 11(3):197–202. PMID:
24083808.
Article
12. Luster MI, Portier C, Pait DG, Germolec DR. Use of animal studies in risk assessment for immunotoxicology. Toxicology. 1994; 92(1-3):229–243. PMID:
7940563.
Article
13. Pang C, Zhu C, Zhang Y, Ge Y, Li S, Huo S, et al. 2,3,7,8-Tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell. Toxicol Lett. 2019; 311:49–57. PMID:
31014974.
Article
14. Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019; 19(3):184–197. PMID:
30718831.
Article
15. Holsapple MP, Snyder NK, Wood SC, Morris DL. A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: 1991 update. Toxicology. 1991; 69(3):219–255. PMID:
1949050.
Article
16. Tryphonas H. Immunotoxicity of polychlorinated biphenyls: present status and future considerations. Exp Clin Immunogenet. 1994; 11(2-3):149–162. PMID:
7826664.
Article
17. Voccia I, Blakley B, Brousseau P, Fournier M. Immunotoxicity of pesticides: a review. Toxicol Ind Health. 1999; 15(1-2):119–132. PMID:
10188195.
Article
18. Lv QY, Wan B, Guo LH, Zhao L, Yang Y. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis and immune cell dysfunction. Chemosphere. 2015; 120:621–630. PMID:
25462306.
Article
19. Germolec D, Luebke R, Rooney A, Shipkowski K, Vandebriel R, van Loveren H. Immunotoxicology: a brief history, current status and strategies for future immunotoxicity assessment. Curr Opin Toxicol. 2017; 5:55–59. PMID:
28989989.
Article
20. Inadera H. The immune system as a target for environmental chemicals: Xenoestrogens and other compounds. Toxicol Lett. 2006; 164(3):191–206. PMID:
16697129.
Article
21. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA. Food web-specific biomagnification of persistent organic pollutants. Science. 2007; 317(5835):236–239. PMID:
17626882.
Article
22. Desforges JP, Sonne C, Levin M, Siebert U, De Guise S, Dietz R. Immunotoxic effects of environmental pollutants in marine mammals. Environ Int. 2016; 86:126–139. PMID:
26590481.
Article
23. Ryu DH, Yu HT, Kim SA, Lee YM, Hong SH, Yoon YR, et al. Is chronic exposure to low-dose organochlorine pesticides a new risk factor of T-cell immunosenescence? Cancer Epidemiol Biomarkers Prev. 2018; 27(10):1159–1167. PMID:
29991517.
Article
24. Pawelec G. T-cell immunity in the aging human. Haematologica. 2014; 99(5):795–797. PMID:
24790056.
Article
25. Lee YM, Kim KS, Jacobs DR Jr, Lee DH. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev. 2017; 18(2):129–139. PMID:
27911986.
Article
26. Langin D. Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol. 2006; 329(8):598–607. PMID:
16860278.
Article
27. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015; 7(11):9453–9474. PMID:
26580649.
Article
28. Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. Biochimie. 2016; 125:259–266. PMID:
26542285.
Article
29. Lee YM, Jacobs DR Jr, Lee DH. Persistent organic pollutants and type 2 diabetes: a critical review of review articles. Front Endocrinol (Lausanne). 2018; 9:712. PMID:
30542326.
Article
30. Ibrahim MM, Fjære E, Lock EJ, Naville D, Amlund H, Meugnier E, et al. Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice. PLoS One. 2011; 6(9):e25170. PMID:
21966444.
Article
31. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, et al. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect. 2010; 118(4):465–471. PMID:
20064776.
Article
32. Jansen A, Lyche JL, Polder A, Aaseth J, Skaug MA. Increased blood levels of persistent organic pollutants (POP) in obese individuals after weight loss-A review. J Toxicol Environ Health B Crit Rev. 2017; 20(1):22–37. PMID:
28051929.
Article
33. Lee DH, Jacobs DR Jr, Lind L, Lind PM. Lipophilic environmental chemical mixtures released during weight-loss: the need to consider dynamics. BioEssays. 2020; 42(6):e1900237. PMID:
32363609.
Article
34. Lee DH, Jacobs DR Jr. New approaches to cope with possible harms of low-dose environmental chemicals. J Epidemiol Community Health. 2019; 73(3):193–197. PMID:
30635437.
Article
35. Lee YM, Shin JY, Kim SA, Jacobs DR Jr, Lee DH. Can habitual exercise help reduce serum concentrations of lipophilic chemical mixtures? Association between physical activity and persistent organic pollutants. Diabetes Metab J. 2020; 44(5):764–774. PMID:
32174058.
Article
36. Lee YM, Heo S, Kim SA, Lee DH. Is dietary macronutrient intake associated with serum concentrations of organochlorine pesticides in humans? Environ Pollut. 2020; 259:113819. PMID:
31887593.
Article
37. Lee YM, Lee DH. Mitochondrial toxins and healthy lifestyle meet at the crossroad of hormesis. Diabetes Metab J. 2019; 43(5):568–577. PMID:
31694079.
Article
38. Kim SA, Lee YM, Choi JY, Jacobs DR Jr, Lee DH. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ Pollut. 2018; 233:725–734. PMID:
29126094.
Article
39. Senthilingam M. COVID-19 has made the obesity epidemic worse, but failed to ignite enough action. BMJ. 2021; 372(411):n411. PMID:
33664084.
Article