1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37:2129–200.
2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association. Circulation. 2020; 141:e139–e596.
Article
3. Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015; 385:812–24.
Article
4. Rajadurai J, Tse HF, Wang CH, Yang NI, Zhou J, Sim D. Understanding the epidemiology of heart failure to improve management practices: an Asia-Pacific perspective. J Card Fail. 2017; 23:327–39.
Article
6. Ahmadi A, Soori H, Mobasheri M, Etemad K, Khaledifar A. Heart failure, the outcomes, predictive and related factors in Iran. J Mazandaran Univ Med Sci. 2014; 24:180–8.
7. Sahle BW, Owen AJ, Mutowo MP, Krum H, Reid CM. Prevalence of heart failure in Australia: a systematic review. BMC Cardiovasc Disord. 2016; 16:32.
Article
8. Negarandeh R, Zolfaghari M, Bashi N, Kiarsi M. Evaluating the effect of monitoring through telephone (tele-monitoring) on self-care behaviors and readmission of patients with heart failure after discharge. Appl Clin Inform. 2019; 10:261–8.
Article
9. Gupta A, Fonarow GC. The Hospital Readmissions Reduction Program-learning from failure of a healthcare policy. Eur J Heart Fail. 2018; 20:1169–74.
Article
10. Maggioni AP, Orso F, Calabria S, Rossi E, Cinconze E, Baldasseroni S, et al. The real-world evidence of heart failure: findings from 41 413 patients of the ARNO database. Eur J Heart Fail. 2016; 18:402–10.
Article
11. Jackson JD, Cotton SE, Bruce Wirta S, Proenca CC, Zhang M, Lahoz R, et al. Burden of heart failure on patients from China: results from a cross-sectional survey. Drug Des Devel Ther. 2018; 12:1659–68.
Article
12. Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J. 2016; 15:26–47.
Article
13. Vapnik V. The nature of statistical learning theory. New York (NY): Springer Science & Business Media;2013.
14. Tapak L, Shirmohammadi-Khorram N, Amini P, Alafchi B, Hamidi O, Poorolajal J. Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clin Epidemiol Glob Health. 2019; 7:293–9.
Article
15. Carreira-Perpinan MA, Zharmagambetov A. Ensembles of bagged TAO trees consistently improve over random forests, AdaBoost and gradient boosting. In : FODS ‘20: ACM-IMS Foundations of Data Science Conference; 2020 Oct 19–20; Virtual Event, USA. p. 35–46.
Article
16. Mortazavi BJ, Downing NS, Bucholz EM, Dharmarajan K, Manhapra A, Li SX, et al. Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes. 2016; 9:629–40.
Article
17. Awan SE, Bennamoun M, Sohel F, Sanfilippo FM, Dwivedi G. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. ESC Heart Fail. 2019; 6:428–35.
Article
18. Lorenzoni G, Sabato SS, Lanera C, Bottigliengo D, Minto C, Ocagli H, et al. Comparison of machine learning techniques for prediction of hospitalization in heart failure patients. J Clin Med. 2019; 8:1298.
Article
19. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002; 16:321–57.
Article
20. Groenwold RHH, Dekkers OM. Missing data: the impact of what is not there. Eur J Endocrinol. 2020; 183:E7–E9.
Article
21. Haji-Maghsoudi S, Rastegari A, Garrusi B, Baneshi MR. Addressing the problem of missing data in decision tree modeling. J Appl Stat. 2018; 45:547–57.
Article
22. Sohrabi B, Vanani IR, Gooyavar A, Naderi N. Predicting the readmission of heart failure patients through data analytics. J Inf Knowl Manag. 2019; 18:1950012.
Article
23. Kalateh Sadati A, Bagheri Lankarani K, Tabrizi R, Rahnavard F, Zakerabasali S. Evaluation of 30-day unplanned hospital readmission in a large teaching hospital in Shiraz, Iran. Shiraz E-Med J. 2017; 18:e39745.
Article
24. Mughal MO, Kim S. Signal classification and jamming detection in wide-band radios using Naïve Bayes classifier. IEEE Commun Lett. 2018; 22:1398–401.
Article
25. Artetxe A, Larburu N, Murga N, Escolar V, Grana M. Heart failure readmission or early death risk factor analysis: A case study in a telemonitoring program. In : Chen YW, Tanaka S, Howlett R, Jain L, editors. Innovation in Medicine and Healthcare 2017. Cham, Switzerland: Springer;2017. p. 244–53.
26. Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, et al. Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction. JACC Heart Fail. 2020; 8:12–21.
Article
27. Frizzell JD, Liang L, Schulte PJ, Yancy CW, Heidenreich PA, Hernandez AF, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol. 2017; 2:204–9.
28. Ouwerkerk W, Voors AA, Zwinderman AH. Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC Heart Fail. 2014; 2:429–36.
29. Au AG, McAlister FA, Bakal JA, Ezekowitz J, Kaul P, van Walraven C. Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization. Am Heart J. 2012; 164:365–72.
Article