J Korean Med Sci.  2021 Nov;36(42):e298. 10.3346/jkms.2021.36.e298.

Antivirals for Coexistence with COVID-19: Brief Review for General Physicians

Affiliations
  • 1Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
  • 2Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

In order to end the coronavirus disease 2019 (COVID-19) pandemic that has lasted for nearly two years, it is most necessary to introduce antiviral drugs specific to COVID-19 along with the establishment of herd immunity by vaccination. Candidates currently being studied include nucleoside analogues that inhibit replication, protease inhibitors, and entry blockers. Not only the virus itself, but also the host protein that the virus uses in its pathogenesis is the target of treatment. Although the severe acute respiratory syndrome coronavirus 2 will not be completely eradicated, if the use of antiviral drugs is established, the COVID-19 pandemic will end through coexistence with the virus.

Keyword

Antiviral; COVID-19; SARS-CoV-2; With-Corona

Figure

  • Fig. 1 Antivirals for the treatment of severe acute respiratory syndrome coronavirus 2 on the basis of viral life cycle.ACE2 = angiotensin converting enzyme 2, TMPRSS2 = transmembrane protease serine subtype 2, RdRp = RNA-dependent RNA polymerase.Part of the graphic of viral particle is from a site of the free vector image site, Image credit: Davian Ho for the Innovative Genomics Institute at https://innovativegenomics.org/free-covid-19-illustrations/.


Reference

1. Yoo JH. The fight against the 2019-nCoV outbreak: an arduous march has just begun. J Korean Med Sci. 2020; 35(4):e56. PMID: 31997618.
Article
2. Korea Disease Control and Prevention Agency. Regular briefing on October-20, 2021. Updated 2021. Accessed October 21, 2021. http://ncov.mohw.go.kr/tcmBoardView.do?brdId=3&brdGubun=31&dataGubun=&ncvContSeq=6023&contSeq=6023&board_id=312&gubun=ALL.
3. COVIDvax.live in South Korea. Updated 2021. Accessed Octobor 25, 2021. https://covidvax.live/location/kor.
4. Yonhap News Agency. S. Korea to consider ‘With Corona’ in second week of Nov.: top health official. Updated 2021. Accessed October 10, 2021. https://en.yna.co.kr/view/AEN20211007008100320.
5. Jung J. A long way to the recovery: COVID-19 will not disappear. J Korean Med Sci. 2021; 36(32):e231. PMID: 34402229.
Article
6. Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. SARS-CoV-2 antiviral therapy. Clin Microbiol Rev. 2021; 34(4):e0010921.
Article
7. Dolgin E. The race for antiviral drugs to beat COVID - and the next pandemic. Nature. 2021; 592(7854):340–343. PMID: 33854246.
Article
8. Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells. 2020; 9(5):1267.
Article
9. Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020; 64(6):e00483–e00420. PMID: 32205349.
Article
10. Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 2013; 9(8):e1003565. PMID: 23966862.
Article
11. Tahir M. Coronavirus genomic nsp14-ExoN, structure, role, mechanism, and potential application as a drug target. J Med Virol. 2021; 93(7):4258–4264. PMID: 33837972.
Article
12. Ferron F, Subissi L, Silveira De Morais AT, Le NT, Sevajol M, Gluais L, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci U S A. 2018; 115(2):E162–E171. PMID: 29279395.
Article
13. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020; 295(15):4773–4779. PMID: 32094225.
Article
14. Bravo JP, Dangerfield TL, Taylor DW, Johnson KA. Remdesivir is a delayed translocation inhibitor of SARS-CoV-2 replication. Mol Cell. 2021; 81(7):1548–1552.e4. PMID: 33631104.
Article
15. Menéndez-Arias L. Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. J Biol Chem. 2021; 297(1):100867. PMID: 34118236.
Article
16. Gordon CJ, Tchesnokov EP, Schinazi RF, Götte M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J Biol Chem. 2021; 297(1):100770. PMID: 33989635.
Article
17. Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021; 28(9):740–746. PMID: 34381216.
Article
18. Good SS, Westover J, Jung KH, Zhou XJ, Moussa A, La Colla P, et al. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob Agents Chemother. 2021; 65(4):e02479-20. PMID: 33558299.
Article
19. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities. J Med Chem. 2021; DOI: 10.1021/acs.jmedchem.0c01140. Forthcoming.
Article
20. Vandyck K, Deval J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr Opin Virol. 2021; 49:36–40. PMID: 34029993.
Article
21. Mei M, Tan X. Current strategies of antiviral drug discovery for COVID-19. Front Mol Biosci. 2021; 8:671263. PMID: 34055887.
Article
22. Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020; 30(8):678–692. PMID: 32541865.
Article
23. Ryu DK, Kang B, Noh H, Woo SJ, Lee MH, Nuijten PM, et al. The in vitro and in vivo efficacy of CT-P59 against Gamma, Delta and its associated variants of SARS-CoV-2. Biochem Biophys Res Commun. 2021; 578:91–96. PMID: 34547629.
24. Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS, Chen EC, et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol. 2021; 6(10):1233–1244. PMID: 34548634.
Article
25. AstraZeneca. COVID-19 Long-Acting AntiBody (LAAB) combination AZD7442 rapidly advances into Phase III clinical trials. Updated 2020. Accessed October 1, 2021. https://www.astrazeneca.com/media-centre/press-releases/2020/covid-19-long-acting-antibody-laab-combination-azd7442-rapidly-advances-into-phase-iii-clinical-trials.html.
26. Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, et al. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science. 2020; 370(6521):1208–1214. PMID: 33154107.
Article
27. Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, et al. Camostat mesylate against SARS-CoV-2 and COVID-19-rationale, dosing and safety. Basic Clin Pharmacol Toxicol. 2021; 128(2):204–212. PMID: 33176395.
Article
28. Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother. 2020; 64(6):e00754–e00720. PMID: 32312781.
Article
29. Korea Clinical Trials Information Center. Summary of COVID-19 clinical trials as of 20211012. Updated 2021. Accessed October 10, 2021. https://www.koreaclinicaltrials.org/kr/board/covid19_smry/boardView.do?bbsIdx=1332&pageIndex=1&searchCondition=&searchKeyword=.
30. Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, et al. Repurposed antiviral drugs for Covid-19 - Interim WHO Solidarity Trial Results. N Engl J Med. 2021; 384(6):497–511. PMID: 33264556.
Article
31. Sharun K, Dhama K, Patel SK, Pathak M, Tiwari R, Singh BR, et al. Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob. 2020; 19(1):23. PMID: 32473642.
Article
32. World Health Organization. WHO's Solidarity clinical trial enters a new phase with three new candidate drugs. Updated 2021. Accessed October 10, 2021. https://www.who.int/news/item/11-08-2021-who-s-solidarity-clinical-trial-enters-a-new-phase-with-three-new-candidate-drugs.
33. Joo EJ, Ko JH, Kim SE, Kang SJ, Baek JH, Heo EY, et al. Clinical and virologic effectiveness of remdesivir treatment for severe coronavirus disease 2019 (COVID-19) in Korea: a nationwide multicenter retrospective cohort study. J Korean Med Sci. 2021; 36(11):e83. PMID: 33754512.
Article
34. Fischer W, Eron JJ, Holman W, Cohen MS, Fang L, Szewczyk LJ, et al. Molnupiravir, an oral antiviral treatment for COVID-19. medRxiv. 2021; Forthcoming. DOI: 10.1101/2021.06.17.21258639.
Article
35. Korea Herald. S. Korea's hope for normalization boosted with positive trial results from Merck. Updated 2021. Accessed October 10, 2021. http://www.koreaherald.com/view.php?ud=20211002000066.
36. Sohl CD, Szymanski MR, Mislak AC, Shumate CK, Amiralaei S, Schinazi RF, et al. Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ. Proc Natl Acad Sci U S A. 2015; 112(28):8596–8601. PMID: 26124101.
37. Zhou S, Hill CS, Sarkar S, Tse LV, Woodburn BM, Schinazi RF, et al. β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis. 2021; 224(3):415–419. PMID: 33961695.
Article
38. Korea Herald. Controversy growing over price paid for COVID-19 treatments. Updated 2021. Accessed October 10, 2021. https://www.koreatimes.co.kr/www/nation/2021/09/119_315334.html.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr