Cancer Res Treat.  2021 Oct;53(4):1195-1203. 10.4143/crt.2020.1337.

Real-World Clinical Outcomes and Prognostic Factors for Patients with Advanced Angiosarcoma who Received Systemic Treatment

Affiliations
  • 1Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
  • 2Cancer Research Institute, Seoul National University, Seoul, Korea
  • 3Department of Pathology, Seoul National University Hospital, Seoul, Korea
  • 4Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea

Abstract

Purpose
Angiosarcoma is a highly aggressive mesenchymal tumor. Although systemic chemotherapy is often considered for the inoperable or metastatic angiosarcoma, the outcome of such treatment is unsatisfactory and poorly delineated.
Materials and Methods
We reviewed electronic medical records of 75 patients with angiosarcoma who were treated with systemic chemotherapy for inoperable or metastatic disease. Patients were classified as having liver involvement if they had either primary or metastatic hepatic lesions.
Results
Among the patients evaluated, 51 patients were male (68%) and 24 patients (32%) had primary cutaneous angiosarcoma. Liver involvement was present in 28 patients (37.3%). A total of 59 patients received first-line weekly paclitaxel (wPac) and showed an objective response rate (ORR) of 23.7% (n=14), a median progression free survival (mPFS) of 4.0 months (95% confidence interval [CI] 3.0–6.1), and a median overall survival (mOS) of 10.2 months (95% CI 7.0–14.6). Among patients without liver involvement, patients receiving wPac (n=35) had significantly prolonged mPFS (5.8 vs. 3.2 months, respectively, p=0.014) with a tendency for prolonged mOS (13.8 vs. 11.6 months, respectively, p=0.13) than those receiving other regimens (n=12). A total of 24 patients received second- or later-line pazopanib monotherapy and showed an ORR of 16.7% (n=4), a mPFS of 2.4 months (95% CI 1.8–4.3) and a mOS of 5.4 months (95% CI 3.5–NA).
Conclusion
Treatment with first-line wPac and later-line pazopanib seems to provide survival benefit, especially for patients with advanced angiosarcoma without liver involvement.

Keyword

Angiosarcoma; Paclitaxel; Pazopanib; Prognosis

Figure

  • Fig. 1 Overall survival of advanced angiosarcoma patients treated with systemic chemotherapy and the associated prognostic factors. Kaplan-Meier survival curves represent overall survival of advanced angiosarcoma patients. (A) Overall survival of patients included in the study. (B) Blue line represents patients without any liver involvement; red line represents patients with primary hepatic angiosarcoma; green line represents patients with liver metastasis. (C) Blue line represents patients without any liver involvement; red line represents patients with liver involvement. Censored data are marked with vertical segments and numbers at risk are demonstrated on the table at the bottom of each plot.

  • Fig. 2 Progression-free survival and overall survival of advanced angiosarcoma patients treated with first-line weekly paclitaxel (wT) or other regimens. Kaplan-Meier survival curves represent progression-free survival and overall survival of advanced angiosarcoma patients. (A, B) Survival curves show progression-free survival and overall survival of patients according to response to first-line wT. Blue line represents the progression-free survival of all patients who received first-line wT. Red dashed line represents non-responder and green dashed line represents responder. (C, D) Survival curves show progression-free survival and overall survival of patients without liver involvements according to the chemotherapy regimens. Blue line represents patients who received first-line wT and red line represents patients who received other regimens. Censored data are marked with cross segments and numbers at risk are demonstrated on the table at the bottom of each plot.

  • Fig. 3 Progression-free survival and overall survival of advanced angiosarcoma patients treated with second- or later-line pazopanib. Kaplan-Meier survival curves represent progression-free survival and overall survival of advanced angiosarcoma patients. (A, B) Survival curves show progression-free survival and overall survival of patients according to response to second- or later-line pazopanib. Blue lines represent the progression-free survival and overall survival of all patients who received first-line weekly paclitaxel. Red lines represent non-responder and green lines represent responder. Censored data are marked with cross segments and numbers at risk are demonstrated on the table at the bottom of each plot.


Reference

References

1. Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ. Angiosarcoma. Lancet Oncol. 2010; 11:983–91.
Article
2. Lahat G, Dhuka AR, Hallevi H, Xiao L, Zou C, Smith KD, et al. Angiosarcoma: clinical and molecular insights. Ann Surg. 2010; 251:1098–106.
3. Abraham JA, Hornicek FJ, Kaufman AM, Harmon DC, Springfield DS, Raskin KA, et al. Treatment and outcome of 82 patients with angiosarcoma. Ann Surg Oncol. 2007; 14:1953–67.
Article
4. Fayette J, Martin E, Piperno-Neumann S, Le Cesne A, Robert C, Bonvalot S, et al. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: a retrospective study of 161 cases. Ann Oncol. 2007; 18:2030–6.
Article
5. Penel N, Marreaud S, Robin YM, Hohenberger P. Angiosarcoma: state of the art and perspectives. Crit Rev Oncol Hematol. 2011; 80:257–63.
Article
6. Young RJ, Natukunda A, Litiere S, Woll PJ, Wardelmann E, van der Graaf WT. First-line anthracycline-based chemotherapy for angiosarcoma and other soft tissue sarcoma subtypes: pooled analysis of eleven European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group trials. Eur J Cancer. 2014; 50:3178–86.
Article
7. Penel N, Bui BN, Bay JO, Cupissol D, Ray-Coquard I, Piperno-Neumann S, et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. J Clin Oncol. 2008; 26:5269–74.
Article
8. Weidema ME, Versleijen-Jonkers YM, Flucke UE, Desar IM, van der Graaf WT. Targeting angiosarcomas of the soft tissues: a challenging effort in a heterogeneous and rare disease. Crit Rev Oncol Hematol. 2019; 138:120–31.
Article
9. Tokuyama W, Mikami T, Masuzawa M, Okayasu I. Autocrine and paracrine roles of VEGF/VEGFR-2 and VEGF-C/VEGFR-3 signaling in angiosarcomas of the scalp and face. Hum Pathol. 2010; 41:407–14.
Article
10. Itakura E, Yamamoto H, Oda Y, Tsuneyoshi M. Detection and characterization of vascular endothelial growth factors and their receptors in a series of angiosarcomas. J Surg Oncol. 2008; 97:74–81.
Article
11. Agulnik M, Yarber JL, Okuno SH, von Mehren M, Jovanovic BD, Brockstein BE, et al. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann Oncol. 2013; 24:257–63.
Article
12. van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012; 379:1879–86.
Article
13. Fletcher CD, Brdige JA, Hogendoorn PC, Mertens F. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press;2013.
14. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45:228–47.
Article
15. Common terminology criteria for adverse events, v5.0 [Internet]. Waltham, MA: UpToDate;2017. [cited 2018 May 1]. Available from: http://www.uptodate.com/contents/common-terminology-criteria-for-adverse-events .
16. Wang L, Lao IW, Yu L, Wang J. Clinicopathological features and prognostic factors in angiosarcoma: A retrospective analysis of 200 patients from a single Chinese medical institute. Oncol Lett. 2017; 14:5370–8.
Article
17. Penel N, Italiano A, Ray-Coquard I, Chaigneau L, Delcambre C, Robin YM, et al. Metastatic angiosarcomas: doxorubicin-based regimens, weekly paclitaxel and metastasectomy significantly improve the outcome. Ann Oncol. 2012; 23:517–23.
Article
18. Ray-Coquard IL, Domont J, Tresch-Bruneel E, Bompas E, Cassier PA, Mir O, et al. Paclitaxel given once per week with or without bevacizumab in patients with advanced angiosarcoma: a randomized phase II trial. J Clin Oncol. 2015; 33:2797–802.
Article
19. Byeon S, Song HN, Kim HK, Ham JS, Lee SJ, Lee J, et al. A Korean single-center, real-world, retrospective study of first-line weekly paclitaxel in patients with metastatic angiosarcoma. Clin Sarcoma Res. 2016; 6:8.
Article
20. Kollar A, Jones RL, Stacchiotti S, Gelderblom H, Guida M, Grignani G, et al. Pazopanib in advanced vascular sarcomas: an EORTC Soft Tissue and Bone Sarcoma Group (STBSG) retrospective analysis. Acta Oncol. 2017; 56:88–92.
21. Zietz C, Rossle M, Haas C, Sendelhofert A, Hirschmann A, Sturzl M, et al. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol. 1998; 153:1425–33.
Article
22. Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014; 46:376–9.
Article
23. Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis. 2013; 16:481–92.
Article
24. Schutz FA, Choueiri TK, Sternberg CN. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit Rev Oncol Hematol. 2011; 77:163–71.
Article
25. Wagner MJ, Ravi V, Menter DG, Sood AK. Endothelial cell malignancies: new insights from the laboratory and clinic. NPJ Precis Oncol. 2017; 1:11.
Article
26. Lee SW, Song CY, Gi YH, Kang SB, Kim YS, Nam SW, et al. Hepatic angiosarcoma manifested as recurrent hemoperitoneum. World J Gastroenterol. 2008; 14:2935–8.
Article
27. Bhati CS, Bhatt AN, Starkey G, Hubscher SG, Bramhall SR. Acute liver failure due to primary angiosarcoma: a case report and review of literature. World J Surg Oncol. 2008; 6:104.
Article
28. Chang YP, Chen YM, Lai CH, Lin CY, Fang WF, Huang CH, et al. The impact of de novo liver metastasis on clinical outcome in patients with advanced non-small-cell lung cancer. PLoS One. 2017; 12:e0178676.
Article
29. Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA, et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res. 2017; 5:417–24.
Article
30. Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016; 22:1294–302.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr