Cancer Res Treat.  2021 Oct;53(4):1174-1183. 10.4143/crt.2021.031.

Ferroportin and FBXL5 as Prognostic Markers in Advanced Stage Clear Cell Renal Cell Carcinoma

Affiliations
  • 1Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
  • 2Division of Hemato-Oncology, National Health Insurance Service (NHIS) Ilsan Hospital, Goyang, Korea
  • 3Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
  • 4Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea

Abstract

Purpose
Advanced stage clear cell renal cell carcinoma (ccRCC) involves a poor prognosis. Several studies have reported that dysfunctions in iron metabolism‒related proteins may cause tumor progression and metastasis of this carcinoma. In this study, we investigated the impact of the expression of iron metabolism‒related proteins on patient prognoses in advanced stage ccRCCs.
Materials and Methods
All of 143 advanced stage ccRCC specimens were selected following validation with double blind reviews. Several clinicopathological parameters including nuclear grade, perirenal fat invasion, renal sinus fat invasion, vascular invasion, necrosis, and sarcomatoid/rhabdoid differentiation were compared with the expression of ferroportin (FPN), and F-Box and leucine rich repeat protein 5 (FBXL5), by immunohistochemistry. FPN and FBXL5 mRNA level of ccRCC from The Cancer Genome Atlas database were also analyzed for validation.
Results
FPN and FBXL5 immunohistochemistry showed membrane and cytoplasmic expression, respectively. Based on the H-score, cases were classified as low or high expression with a cutoff value of 20 for FPN and 15 for FBXL5, respectively. Low expression of FPN and FBXL5 were significantly associated with patient death (p=0.022 and p=0.005, respectively). In survival analyses, low expression of FPN and FBXL5 were significantly associated with shorter overall survival (p=0.003 and p=0.004, respectively). On multivariate analysis, low expression of FBXL5 (hazard ratio, 2.001; p=0.034) was significantly associated with shorter overall survival.
Conclusion
FPN and FBXL5 can be used as potential prognostic markers and therapeutic targets for advanced stage ccRCC.

Keyword

Clear cell renal cell carcinoma; Ferroportin; F-Box and leucine rich repeat protein 5; Immunohistochemistry; Prognosis

Figure

  • Fig. 1 Representative cases of ferroportin (FPN), F-Box, and leucine rich repeat protein 5 (FBXL5) and signal transducer and activator of transcription 3 (STAT3) expression in clear cell renal cell carcinomas (×200). FPN showed membrane expression with nonspecific nuclear staining: (A) negative, (B) intensity 1+, (C) intensity 2+, and (D) intensity 3+. FBXL5 cytoplasmic expression: (E) negative, (F) intensity 1+, (G) intensity 2+, and (H) intensity 3+. STAT3 showed nuclear expression: (I) negative, (J) intensity 1+, (K) intensity 2+, and (L) intensity 3+.

  • Fig. 2 Overall survival (OS) of clear cell renal cell carcinoma patients according to ferroportin (FPN), F-Box, and leucine rich repeat protein 5 (FBXL5) and signal transducer and activator of transcription 3 (STAT3) expression. (A) In 143 clear cell renal cell carcinoma, low expression of FPN was significantly associated with shorter OS (p=0.003). (B) Similar to FPN, low FBXL5 expression was significantly associated with shorter OS (p=0.004). (C) Cases with low expression of both FPN and FBXL5 showed significantly shorter OS than other cases (p < 0.001). (D) High STAT3 expression showed significantly shorter OS (p=0.007). In patients with recurrence or metastasis, those with low FPN (E) and FBXL5 (F) expression showed significantly shorter OS (p=0.016 and p=0.015, respectively). (G) High STAT3 expression did not show significant differences in patients with recurrence or metastasis (p=0.525). (H) When analyzing 191 pT3 and pT4 patients of The Cancer Genome Atlas cohort, low mRNA expression level of FPN was significantly associated with shorter OS (p < 0.001). (I) Similar to FPN, the low mRNA expression level of FBXL5 was significantly associated with shorter OS (p=0.014).

  • Fig. 3 Schematic diagram of cross-talk between iron-related metabolism and hypoxia-inducible factor 1α (HIF-1α) in clear cell renal cell carcinoma. The cytosolic excess iron and hydrogen peroxide trigger the Fenton reaction with generation of reactive oxygen species, hydroxyl radicals, and hydroxide anions. To maintain the cytosolic and mitochondrial pH, glycolysis, lactate formation, and subsequent nucleotide synthesis is promoted. Inactivation of VHL induces the activation of HIF-1α, which promotes the expression of glycolysis-related genes and LDHA. FBXL5, F-Box and leucine rich repeat protein 5.


Reference

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68:394–424.
Article
2. Linehan WM, Ricketts CJ. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol. 2019; 16:539–52.
Article
3. Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, et al. The metabolic basis of kidney cancer. Cancer Discov. 2019; 9:1006–21.
Article
4. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol. 2016; 70:93–105.
Article
5. Shen C, Kaelin WG Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013; 23:18–25.
Article
6. Qian CN, Huang D, Wondergem B, Teh BT. Complexity of tumor vasculature in clear cell renal cell carcinoma. Cancer. 2009; 115:2282–9.
Article
7. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma. Cancer Treat Rev. 2018; 70:127–37.
Article
8. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007; 356:115–24.
Article
9. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010; 28:1061–8.
Article
10. Wang Y, Yu L, Ding J, Chen Y. Iron metabolism in cancer. Int J Mol Sci. 2018; 20:95.
Article
11. Guo W, Zhang S, Chen Y, Zhang D, Yuan L, Cong H, et al. An important role of the hepcidin-ferroportin signaling in affecting tumor growth and metastasis. Acta Biochim Biophys Sin (Shanghai). 2015; 47:703–15.
Article
12. Muto Y, Moroishi T, Ichihara K, Nishiyama M, Shimizu H, Eguchi H, et al. Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis. J Exp Med. 2019; 216:950–65.
Article
13. Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab. 2011; 14:339–51.
Article
14. Wang L, Liu X, You LH, Ci YZ, Chang S, Yu P, et al. Hepcidin and iron regulatory proteins coordinately regulate ferroportin 1 expression in the brain of mice. J Cell Physiol. 2019; 234:7600–7.
Article
15. Robinson RL, Sharma A, Bai S, Heneidi S, Lee TJ, Kodeboyina SK, et al. Comparative STAT3-regulated gene expression profile in renal cell carcinoma subtypes. Front Oncol. 2019; 9:72.
Article
16. Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, et al. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 2016; 24:447–61.
Article
17. Mou Y, Zhang Y, Wu J, Hu B, Zhang C, Duan C, et al. The landscape of iron metabolism-related and methylated genes in the prognosis prediction of clear cell renal cell carcinoma. Front Oncol. 2020; 10:788.
Article
18. Delahunt B, Eble JN, Egevad L, Samaratunga H. Grading of renal cell carcinoma. Histopathology. 2019; 74:4–17.
Article
19. Park CK, Shin SJ, Cho YA, Joo JW, Cho NH. HoxB13 expression in ductal type adenocarcinoma of prostate: clinicopathologic characteristics and its utility as potential diagnostic marker. Sci Rep. 2019; 9:20205.
Article
20. Cho YA, Chung JM, Ryu H, Kim EK, Cho BC, Yoon SO. Investigating Trk protein expression between oropharyngeal and non-oropharyngeal squamous cell carcinoma: clinical implications and possible roles of human papillomavirus infection. Cancer Res Treat. 2019; 51:1052–63.
Article
21. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio- informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004; 10:7252–9.
22. Wu YY, Jiang JN, Fang XD, Ji FJ. STEAP1 regulates tumorigenesis and chemoresistance during peritoneal metastasis of Gastric Cancer. Front Physiol. 2018; 9:1132.
Article
23. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988; 240:640–2.
Article
24. Sun H, Zhang C, Cao S, Sheng T, Dong N, Xu Y. Fenton reactions drive nucleotide and ATP syntheses in cancer. J Mol Cell Biol. 2018; 10:448–59.
Article
25. Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016; 69:646–57.
26. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003; 23:9361–74.
27. Menezes SV, Sahni S, Kovacevic Z, Richardson DR. Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. J Biol Chem. 2017; 292:12772–82.
Article
28. Chen XL, Lei L, Hong LL, Ling ZQ. Potential role of NDRG2 in reprogramming cancer metabolism and epithelial-to-mesenchymal transition. Histol Histopathol. 2018; 33:655–63.
29. Xue D, Zhou CX, Shi YB, Lu H, He XZ. Decreased expression of ferroportin in prostate cancer. Oncol Lett. 2015; 10:913–6.
Article
30. Pinnix ZK, Miller LD, Wang W, D’Agostino R Jr, Kute T, Willingham MC, et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010; 2:43ra56.
Article
31. Toshiyama R, Konno M, Eguchi H, Asai A, Noda T, Koseki J, et al. Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncol Lett. 2018; 15:8125–33.
Article
32. Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, et al. Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res. 2008; 14:379–87.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr