Korean J Gastroenterol.  2021 Oct;78(4):205-212. 10.4166/kjg.2021.121.

Recent Updates on Endoscopic Retrograde Cholangiography-guided Intraductal Radiofrequency Ablation for Malignant Biliary Stricture

Affiliations
  • 1Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Abstract

Malignant biliary strictures are caused by pancreatobiliary cancer and other metastatic malignancies. Most of them are unresectable at diagnosis with a dismal prognosis. Various new ablation methods have been introduced. Of them, ERCP-guided intraductal radiofrequency ablation (ID-RFA) appears to be the most promising minimally invasive endoscopic treatment by delivering a high-frequency alternating current to the target tissue, leading to coagulative necrosis. Thus far, many studies have provided evidence that ERCP-guided ID-RFA is a safe, feasible, and effective treatment modality for stent patency and overall survival. Compared to other ablation treatments, ERCP-guided ID-RFA has several advantages, including ease of delivery, controlled application of thermal energy, low cost, and fewer systemic side effects with an acceptable safety profile. Therefore, ERCP-guided ID-RFA can be considered an adjunctive treatment for the palliation of unresectable malignant biliary strictures. On the other hand, the decision of local ablation treatment should be individualized by multidisciplinary team support due to the lack of comparative studies.

Keyword

Radiofrequency ablation; Cholangiopancreatography; endoscopic retrograde; Intraductal carcinoma; Biliary tract neoplasms; Jaundice

Figure

  • Fig. 1 Schematic diagram of endoscopic retrograde cholangiography-guided intraductal radiofrequency ablation. RFA, radiofrequency ablation; ELRA, endoluminal radiofrequency ablation.

  • Fig. 2 Endoscopic retrograde cholangiography (ERCP)-guided intraductal radiofrequency ablation (ID-RFA). (A) Cholangiogram showing intraductal filling defects in the common bile duct. (B) ERCP-guided ID-RFA (80℃, 10 W for 120 sec) was performed using the endoluminal radiofrequency ablation RFA catheter® (Starmed, Goyang, Korea). An endoscopic image showed the ablated tumor tissue after balloon retrieval. (D) At the end of the procedure, a biliary self-expanding metal stent was placed in the post-RFA stricture site after ID-RFA.


Reference

1. Shah DR, Green S, Elliot A, McGahan JP, Khatri VP. 2013; Current oncologic applications of radiofrequency ablation therapies. World J Gastrointest Oncol. 5:71–80. DOI: 10.4251/wjgo.v5.i4.71. PMID: 23671734. PMCID: PMC3648666.
Article
2. Yousaf MN, Ehsan H, Muneeb A, et al. 2021; Role of radiofrequency ablation in the management of unresectable pancreatic cancer. Front Med (Lausanne). 7:624997. DOI: 10.3389/fmed.2020.624997. PMID: 33644089. PMCID: PMC7904870.
Article
3. Testoni SGG, Healey AJ, Dietrich CF, Arcidiacono PG. 2020; Systematic review of endoscopy ultrasound-guided thermal ablation treatment for pancreatic cancer. Endosc Ultrasound. 9:83–100. DOI: 10.4103/eus.eus_74_19. PMID: 32295966. PMCID: PMC7279078.
Article
4. Cho JH, Jang SI, Lee DK. 2020; Recent developments in endoscopic ultrasound-guided radiofrequency ablation for pancreatic lesions. Int J Gastrointest Interv. 9:170–176. DOI: 10.18528/ijgii200030.
Article
5. Brace C. 2011; Thermal tumor ablation in clinical use. IEEE Pulse. 2:28–38. DOI: 10.1109/MPUL.2011.942603. PMID: 25372967. PMCID: PMC4226271.
Article
6. Friedman M, Mikityansky I, Kam A, et al. 2004; Radiofrequency ablation of cancer. Cardiovasc Intervent Radiol. 27:427–434. DOI: 10.1007/s00270-004-0062-0. PMID: 15383844. PMCID: PMC2408956.
Article
7. Zacharoulis D, Lazoura O, Sioka E, et al. 2013; Habib EndoHPB: a novel endobiliary radiofrequency ablation device. An experimental study. J Invest Surg. 26:6–10. DOI: 10.3109/08941939.2012.681832. PMID: 23273142.
Article
8. Itoi T, Isayama H, Sofuni A, et al. 2012; Evaluation of effects of a novel endoscopically applied radiofrequency ablation biliary catheter using an ex-vivo pig liver. J Hepatobiliary Pancreat Sci. 19:543–547. DOI: 10.1007/s00534-011-0465-7. PMID: 22038500.
Article
9. Cho JH, Lee KH, Kim JM, Kim YS, Lee DH, Jeong S. 2017; Safety and effectiveness of endobiliary radiofrequency ablation according to the different power and target temperature in a swine model. J Gastroenterol Hepatol. 32:521–526. DOI: 10.1111/jgh.13472. PMID: 27300312.
Article
10. Cho JH, Jeong S, Kim EJ, Kim JM, Kim YS, Lee DH. 2018; Long-term results of temperature-controlled endobiliary radiofrequency ablation in a normal swine model. Gastrointest Endosc. 87:1147–1150. DOI: 10.1016/j.gie.2017.09.013. PMID: 28958907.
Article
11. Kim EJ, Cho JH, Kim YJ, et al. 2019; Intraductal temperature-controlled radiofrequency ablation in malignant hilar obstruction: a preliminary study in animals and initial human experience. Endosc Int Open. 7:E1293–E1300. DOI: 10.1055/a-0970-9005. PMID: 31595223. PMCID: PMC6779589.
Article
12. Kasugai H, Osaki Y, Oka H, Kudo M, Seki T. Osaka Liver Cancer Study Group. 2007; Severe complications of radiofrequency ablation therapy for hepatocellular carcinoma: an analysis of 3,891 ablations in 2,614 patients. Oncology. 72(Suppl 1):72–75. DOI: 10.1159/000111710. PMID: 18087185.
Article
13. Lao OB, Farjah F, Flum DR, Yeung RS. 2009; Adverse events after radio-frequency ablation of unresectable liver tumors: a single-center experience. Am J Surg. 198:76–82. DOI: 10.1016/j.amjsurg.2008.09.025. PMID: 19285299.
Article
14. Tal AO, Vermehren J, Friedrich-Rust M, et al. 2014; Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. World J Gastrointest Endosc. 6:13–19. DOI: 10.4253/wjge.v6.i1.13. PMID: 24527176. PMCID: PMC3921441.
Article
15. Dolak W, Schreiber F, Schwaighofer H, et al. 2014; Endoscopic radio-frequency ablation for malignant biliary obstruction: a nationwide retrospective study of 84 consecutive applications. Surg Endosc. 28:854–860. DOI: 10.1007/s00464-013-3232-9. PMID: 24196547.
Article
16. Sharaiha RZ, Sethi A, Weaver KR, et al. 2015; Impact of radiofrequency ablation on malignant biliary strictures: results of a collaborative registry. Dig Dis Sci. 60:2164–2169. DOI: 10.1007/s10620-015-3558-3. PMID: 25701319.
Article
17. Laleman W, van der Merwe S, Verbeke L, et al. 2017; A new intraductal radiofrequency ablation device for inoperable biliopancreatic tumors complicated by obstructive jaundice: the IGNITE-1 study. Endoscopy. 49:977–982. DOI: 10.1055/s-0043-113559. PMID: 28732391.
Article
18. Yang J, Wang J, Zhou H, et al. 2018; Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy. 50:751–760. DOI: 10.1055/s-0043-124870. PMID: 29342492.
Article
19. Lee YN, Jeong S, Choi HJ, et al. 2019; The safety of newly developed automatic temperature-controlled endobiliary radiofrequency ablation system for malignant biliary strictures: a prospective multi-center study. J Gastroenterol Hepatol. 34:1454–1459. DOI: 10.1111/jgh.14657. PMID: 30861593.
Article
20. Kim EJ, Chung DH, Kim YJ, et al. 2018; Endobiliary radiofrequency ablation for distal extrahepatic cholangiocarcinoma: a clinicopathological study. PLoS One. 13:e0206694. DOI: 10.1371/journal.pone.0206694. PMID: 30439965. PMCID: PMC6237299.
Article
21. Steel AW, Postgate AJ, Khorsandi S, et al. 2011; Endoscopically applied radiofrequency ablation appears to be safe in the treatment of malignant biliary obstruction. Gastrointest Endosc. 73:149–153. DOI: 10.1016/j.gie.2010.09.031. PMID: 21184881.
Article
22. Figueroa-Barojas P, Bakhru MR, Habib NA, et al. 2013; Safety and efficacy of radiofrequency ablation in the management of unresectable bile duct and pancreatic cancer: a novel palliation technique. J Oncol. 2013:910897. DOI: 10.1155/2013/910897. PMID: 23690775. PMCID: PMC3649248.
Article
23. Alis H, Sengoz C, Gonenc M, Kalayci MU, Kocatas A. 2013; Endobiliary radiofrequency ablation for malignant biliary obstruction. Hepatobiliary Pancreat Dis Int. 12:423–427. DOI: 10.1016/S1499-3872(13)60066-1.
Article
24. Kallis Y, Phillips N, Steel A, et al. 2015; Analysis of endoscopic radio-frequency ablation of biliary malignant strictures in pancreatic cancer suggests potential survival benefit. Dig Dis Sci. 60:3449–3455. DOI: 10.1007/s10620-015-3731-8. PMID: 26038094.
Article
25. Laquière A, Boustière C, Leblanc S, Penaranda G, Désilets E, Prat F. 2016; Safety and feasibility of endoscopic biliary radiofrequency ablation treatment of extrahepatic cholangiocarcinoma. Surg Endosc. 30:1242–1248. DOI: 10.1007/s00464-015-4322-7. PMID: 26162420.
Article
26. Wang F, Li Q, Zhang X, et al. 2016; Endoscopic radiofrequency ablation for malignant biliary strictures. Exp Ther Med. 11:2484–2488. DOI: 10.3892/etm.2016.3235. PMID: 27284336. PMCID: PMC4888002.
Article
27. Schmidt A, Bloechinger M, Weber A, et al. 2016; Short-term effects and adverse events of endoscopically applied radiofrequency ablation appear to be comparable with photodynamic therapy in hilar cholangiocarcinoma. United European Gastroenterol J. 4:570–579. DOI: 10.1177/2050640615621235. PMID: 27536367. PMCID: PMC4971790.
Article
28. Sharaiha RZ, Natov N, Glockenberg KS, Widmer J, Gaidhane M, Kahaleh M. 2014; Comparison of metal stenting with radio-frequency ablation versus stenting alone for treating malignant biliary strictures: is there an added benefit? Dig Dis Sci. 59:3099–3102. DOI: 10.1007/s10620-014-3264-6. PMID: 25033929.
Article
29. Kong YL, Zhang HY, Liu CL, et al. Improving biliary stent patency for malignant obstructive jaundice using endobiliary radio-frequency ablation: experience in 150 patients. Surg Endosc. 2021; Mar. 31. [Epub ahead of print]. DOI: 10.1007/s00464-021-08457-3.
Article
30. Xia MX, Wang SP, Yuan JG, et al. Effect of endoscopic radio-frequency ablation on the survival of patients with inoperable malignant biliary strictures: a large cohort study. J Hepatobiliary Pancreat Sci. 2021; Apr. 8. [Epub ahead of print]. DOI: 10.1002/jhbp.960. PMID: 33829657.
Article
31. Sofi AA, Khan MA, Das A, et al. 2018; Radiofrequency ablation combined with biliary stent placement versus stent placement alone for malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc. 87:944–951.e1. DOI: 10.1016/j.gie.2017.10.029. PMID: 29108980.
32. Kang H, Chung MJ, Cho IR, et al. 2021; Efficacy and safety of palliative endobiliary radiofrequency ablation using a novel temperature-controlled catheter for malignant biliary stricture: a single-center prospective randomized phase II TRIAL. Surg Endosc. 35:63–73. DOI: 10.1007/s00464-020-07689-z. PMID: 32488654.
Article
33. Gao DJ, Yang JF, Ma SR, et al. 2021; Endoscopic radiofrequency ablation plus plastic stent placement versus stent placement alone for unresectable extrahepatic biliary cancer: a multi-center randomized controlled trial. Gastrointest Endosc. 94:91–100.e2. DOI: 10.1016/j.gie.2020.12.016. PMID: 33359435.
Article
34. Hu B, Sun B, Gao DJ, et al. 2020; Initial experience of ERCP-guided radio-frequency ablation as the primary therapy for inoperable ampullary carcinomas. Dig Dis Sci. 65:1453–1459. DOI: 10.1007/s10620-019-05849-3. PMID: 31562610.
Article
35. Yang J, Wang J, Zhou H, et al. 2020; Endoscopic radiofrequency ablation plus a novel oral 5-fluorouracil compound versus radiofrequency ablation alone for unresectable extrahepatic cholangiocarcinoma. Gastrointest Endosc. 92:1204–1212.e1. DOI: 10.1016/j.gie.2020.04.075. PMID: 32437711.
36. Bokemeyer A, Matern P, Bettenworth D, et al. 2019; Endoscopic radio-frequency ablation prolongs survival of patients with unresectable hilar cholangiocellular carcinoma - a case-control study. Sci Rep. 9:13685. DOI: 10.1038/s41598-019-50132-0. PMID: 31548703. PMCID: PMC6757045.
Article
37. Rustagi T, Irani S, Reddy DN, et al. 2017; Radiofrequency ablation for intraductal extension of ampullary neoplasms. Gastrointest Endosc. 86:170–176. DOI: 10.1016/j.gie.2016.11.002. PMID: 27866907.
38. Camus M, Napol?on B, Vienne A, et al. 2018; Efficacy and safety of endobiliary radiofrequency ablation for the eradication of residual neoplasia after endoscopic papillectomy: a multicenter prospective study. Gastrointest Endosc. 88:511–518. DOI: 10.1016/j.gie.2018.04.2332. PMID: 29660322.
Article
39. Cho JH. 2021; Intraductal radiofrequency ablation for residual adenoma after endoscopic papillectomy: an additional treatment modality expected to be safe and effective. Gut Liver. 15:151–152. DOI: 10.5009/gnl210080. PMID: 33716222. PMCID: PMC7960971.
Article
40. Choi YH, Yoon SB, Chang JH, Lee IS. 2021; The safety of radio-frequency ablation using a novel temperature-controlled probe for the treatment of residual intraductal lesions after endoscopic papillectomy. Gut Liver. 15:307–314. DOI: 10.5009/gnl20043. PMID: 32616684. PMCID: PMC7960966.
Article
41. So H, Oh CH, Song TJ, et al. 2021; Feasibility and safety of endoluminal radiofrequency ablation as a rescue treatment for bilateral metal stent obstruction due to tumor ingrowth in the hilum: a pilot study. J Clin Med. 10:952. DOI: 10.3390/jcm10050952. PMID: 33804429. PMCID: PMC7957686.
Article
42. Nayar MK, Oppong KW, Bekkali NLH, Leeds JS. 2018; Novel temperature-controlled RFA probe for treatment of blocked metal biliary stents in patients with pancreaticobiliary cancers: initial experience. Endosc Int Open. 6:E513–E517. DOI: 10.1055/s-0044-102097. PMID: 29713676. PMCID: PMC5906122.
Article
43. Strand DS, Cosgrove ND, Patrie JT, et al. 2014; ERCP-directed radio-frequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc. 80:794–804. DOI: 10.1016/j.gie.2014.02.1030. PMID: 24836747.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr