J Rhinol.  2021 Jul;28(2):89-93. 10.18787/jr.2021.00348.

The Similarity of Biomarkers Level between Direct Nasal Fluid and Nasal Lavage Fluid in Allergic Rhinitis Patients

Affiliations
  • 1Department of Otorhinolaryngology-Head and Neck Surgery, Kangdong Sacred Heart Hospital, Seoul, Korea
  • 2Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, Korea

Abstract

Background and Objectives
Biomarkers of allergic rhinitis (AR) have been studied; however, little is known regarding their practical application in the diagnosis of AR. Previous studies collected samples using saline lavage, nasal brushing, or nasal biopsy. To utilize nasal fluid as a diagnostic tool, we need to standardize the method of sample collection. Therefore, this study aimed to evaluate the difference in concentration of biomarkers depending on the method of nasal fluid collection. Materials and Method: Forty-five AR patients who had greater than moderate AR symptoms and who had positive results on skin prick test and serum-specific IgE tests were enrolled in this study. Nasal fluid was collected using the direct method or saline lavage method. The concentration of each biomarker was analyzed using enzyme-linked immunosorbent assay and the values compared.
Results
Nasal fluid samples were collected directly from 14 patients and were collected via saline lavage in 31 patients. No significant differences were found in the median value of each biomarker between the two methods of nasal sample collection.
Conclusion
Nasal fluid collection method does not significantly affect biomarker concentration.

Keyword

Allergic rhinitisㆍBiomarkerㆍDiagnosis

Reference

References

1. Eifan AO, Durham SR. Pathogenesis of rhinitis. Clin Exp Allergy. 2016; 46(9):1139–51.
2. Diamant Z, Boot JD, Mantzouranis E, Flohr R, Sterk PJ, Gerth van Wijk R. Biomarkers in asthma and allergic rhinitis. Pulm Pharmacol Ther. 2010; 23(6):468–81.
3. de Graaf-in’t Veld C, Garrelds IM, Jansen AP, Van Toorenenbergen AW, Mulder PG, Meeuwis J, et al. Effect of intranasal fluticasone proprionate on the immediate and late allergic reaction and nasal hyperreactivity in patients with a house dust mite allergy. Clin Exp Allergy. 1995; 25(10):966–73.
4. Boot JD, Chandoesing P, de Kam ML, Mascelli MA, Das AM, Gerth van Wijk R, et al. Applicability and reproducibility of biomarkers for the evaluation of anti-inflammatory therapy in allergic rhinitis. J Investig Allergol Clin Immunol. 2008; 18(6):433–42.
5. Skrindo I, Ballke C, Gran E, Johansen FE, Baekkevold ES, Jahnsen FL. IL-5 production by resident mucosal allergen-specific T cells in an explant model of allergic rhinitis. Clin Exp Allergy. 2015; 45(8):1296–304.
6. Leaker BR, Malkov VA, Mogg R, Ruddy MK, Nicholson GC, Tan AJ, et al. The nasal mucosal late allergic reaction to grass pollen involves type 2 inflammation (IL-5 and IL-13), the inflammasome (IL-1β), and complement. Mucosal Immunol. 2017; 10(2):408–20.
7. Benson M, Strannegård IL, Wennergren G, Strannegård O. Interleukin-5 and interleukin-8 in relation to eosinophils and neutrophils in nasal fluids from school children with seasonal allergic rhinitis. Pediatr Allergy Immunol. 1999; 10(3):178–85.
8. Sardella A, Voisin C, Nickmilder M, Dumont X, Annesi-Maesano I, Bernard A. Nasal epithelium integrity, environmental stressors, and allergic sensitization: a biomarker study in adolescents. Biomarkers. 2012; 17(4):309–18.
9. Perić A, Mirković CŠ, Vojvodić D. Clara cell protein 16 release from the nasal mucosa in allergic rhinitis, chronic rhinosinusitis, and exposure to air pollutants. Arh Hig Rada Toksikol. 2018; 69(3):215–9.
10. Peri A, Cordella-Miele E, Miele L, Mukherjee AB. Tissue-specific expression of the gene coding for human Clara cell 10-kD protein, a phospholipase A2-inhibitory protein. J Clin Invest. 1993; 92(5):2099–109.
11. Scadding GK, Scadding GW. Diagnosing Allergic Rhinitis. Immunol Allergy Clin North Am. 2016; 36(2):249–60.
12. Corsico AG, De Amici M, Ronzoni V, Giunta V, Mennitti MC, Viscardi A, et al. Allergen-specific immunoglobulin E and allergic rhinitis severity. Allergy Rhinol (Providence). 2017; 8(1):1–4.
13. Chen ST, Sun HL, Lu KH, Lue KH, Chou MC. Correlation of immunoglobulin E, eosinophil cationic protein, and eosinophil count with the severity of childhood perennial allergic rhinitis. J Microbiol Immunol Infect. 2006; 39(3):212–8.
14. Restimulia L, Pawarti DR, Ekorini HM. The Relationship between Serum Vitamin D Levels with Allergic Rhinitis Incidence and Total Nasal Symptom Score in Allergic Rhinitis Patients. Open Access Maced J Med Sci. 2018; 6(8):1405–9.
15. Greiff L, Pipkorn U, Alkner U, Persson CG. The ‘nasal pool’ device applies controlled concentrations of solutes on human nasal airway mucosa and samples its surface exudations/secretions. Clin Exp Allergy. 1990; 20(3):253–9.
16. Datta S, Shah L, Gilman RH, Evans CA. Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. Lancet Glob Health. 2017; 5(8):e760–71.
17. Baranzini SE. Insights into microbiome research 2: Experimental design, sample collection, and shipment. Mult Scler. 2018; 24(11):1419–20.
18. Gökkaya M, Damialis A, Nussbaumer T, Beck I, Bounas-Pyrros N, Bezold S, et al. Defining biomarkers to predict symptoms in subjects with and without allergy under natural pollen exposure. J Allergy Clin Immunol. 2020; 146(3):583–94. e6.
Full Text Links
  • JR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr