Cancer Res Treat.  2021 Jul;53(3):829-836. 10.4143/crt.2020.1165.

Performance and Diagnostic Accuracy of Human Papillomavirus Testing on Self-Collected Urine and Vaginal Samples in a Referral Population

Affiliations
  • 1Department of Obstetrics and Gynecology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
  • 2Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
  • 3Department of Obstetrics and Gynecology, Kangwon National University Hospital, College of Medicine, Kangwon National University, Chuncheon, Korea
  • 4Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Korea
  • 5Sejong Biomed CO., LTD., Paju, Korea

Abstract

Purpose
The study aimed to evaluate the diagnostic accuracy of polymerase chain reaction ‒based high-risk human papillomavirus (HPV) assays on self-collected vaginal and urine samples for detection of precancerous cervical lesions in referral population.
Materials and Methods
Women referred for colposcopy following abnormal cytology, were included this study. A total of 314 matched urine, vaginal, and cervical samples were collected. All samples were tested for HPV DNA using the RealTime HR-S HPV and Anyplex II HPV 28 assays. Primary endpoints were sensitivity for cervical intraepithelial neoplasia (CIN) 2+/CIN3+ and specificity for Conclusion
The detection performance for hrHPV and CIN2+ on self-collected vaginal samples was comparable to that of clinician-collected cervical samples. On the other hand, HPV tests using urine were inferior to those using clinician-collected cervical samples in terms of detecting hrHPV and CIN2+.

Keyword

Cervical intraepithelial neoplasia; Human papillomavirus DNA tests; Specimen handling; Urine

Figure

  • Fig. 1 Study flow diagram. CIN, cervical intraepithelial neoplasia; HPV, human papillomavirus.


Reference

References

1. Arbyn M, Castle PE. Offering self-sampling kits for HPV testing to reach women who do not attend in the regular cervical cancer screening program. Cancer Epidemiol Biomarkers Prev. 2015; 24:769–72.
Article
2. Cuzick J, Cadman L, Mesher D, Austin J, Ashdown-Barr L, Ho L, et al. Comparing the performance of six human papillomavirus tests in a screening population. Br J Cancer. 2013; 108:908–13.
Article
3. Szarewski A, Mesher D, Cadman L, Austin J, Ashdown-Barr L, Ho L, et al. Comparison of seven tests for high-grade cervical intraepithelial neoplasia in women with abnormal smears: the Predictors 2 study. J Clin Microbiol. 2012; 50:1867–73.
Article
4. Bos AB, Rebolj M, Habbema JD, van Ballegooijen M. Nonattendance is still the main limitation for the effectiveness of screening for cervical cancer in the Netherlands. Int J Cancer. 2006; 119:2372–5.
Article
5. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012; 30(Suppl 5):F12–23.
Article
6. Brisson M, Kim JJ, Canfell K, Drolet M, Gingras G, Burger EA, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet. 2020; 395:575–90.
Article
7. Cuzick J, Clavel C, Petry KU, Meijer CJ, Hoyer H, Ratnam S, et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. Int J Cancer. 2006; 119:1095–101.
Article
8. Ronco G, Dillner J, Elfstrom KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014; 383:524–32.
Article
9. Arbyn M, Verdoodt F, Snijders PJ, Verhoef VM, Suonio E, Dillner L, et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol. 2014; 15:172–83.
Article
10. Polman NJ, Ebisch RM, Heideman DA, Melchers WJ, Bekkers RL, Molijn AC, et al. Performance of human papillomavirus testing on self-collected versus clinician-collected samples for the detection of cervical intraepithelial neoplasia of grade 2 or worse: a randomised, paired screen-positive, non-inferiority trial. Lancet Oncol. 2019; 20:229–38.
Article
11. Pathak N, Dodds J, Zamora J, Khan K. Accuracy of urinary human papillomavirus testing for presence of cervical HPV: systematic review and meta-analysis. BMJ. 2014; 349:g5264.
Article
12. Lynge E. Self-collected versus clinician-collected samples for HPV testing. Lancet Oncol. 2019; 20:170–1.
Article
13. Cuzick J, Cadman L, Ahmad AS, Ho L, Terry G, Kleeman M, et al. Performance and diagnostic accuracy of a urine-based human papillomavirus assay in a referral population. Cancer Epidemiol Biomarkers Prev. 2017; 26:1053–9.
Article
14. Nilyanimit P, Chansaenroj J, Karalak A, Laowahutanont P, Junyangdikul P, Poovorawan Y. Comparison of human papillomavirus (HPV) detection in urine and cervical swab samples using the HPV GenoArray Diagnostic assay. PeerJ. 2017; 5:e3910.
Article
15. Cho HW, Ouh YT, Hong JH, Min KJ, So KA, Kim TJ, et al. Comparison of urine, self-collected vaginal swab, and cervical swab samples for detecting human papillomavirus (HPV) with Roche Cobas HPV, Anyplex II HPV, and RealTime HR-S HPV assay. J Virol Methods. 2019; 269:77–82.
Article
16. Bernal S, Palomares JC, Artura A, Parra M, Cabezas JL, Robles A, et al. Comparison of urine and cervical samples for detecting human papillomavirus (HPV) with the Cobas 4800 HPV test. J Clin Virol. 2014; 61:548–52.
Article
17. Barcelos AC, Michelin MA, Adad SJ, Murta EF. Atypical squamous cells of undetermined significance: Bethesda classification and association with human papillomavirus. Infect Dis Obstet Gynecol. 2011; 2011:904674.
Article
18. Spinillo A, Dal Bello B, Gardella B, Roccio M, Dacco MD, Silini EM. Multiple human papillomavirus infection and high grade cervical intraepithelial neoplasia among women with cytological diagnosis of atypical squamous cells of undetermined significance or low grade squamous intraepithelial lesions. Gynecol Oncol. 2009; 113:115–9.
Article
19. Stanczuk G, Baxter G, Currie H, Lawrence J, Cuschieri K, Wilson A, et al. Clinical validation of hrHPV testing on vaginal and urine self-samples in primary cervical screening (cross-sectional results from the Papillomavirus Dumfries and Galloway-PaVDaG study). BMJ Open. 2016; 6:e010660.
Article
20. Arbyn M, Smith SB, Temin S, Sultana F, Castle P. Collaboration on Self-Sampling and HPV Testing. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated meta-analyses. BMJ. 2018; 363:k4823.
Article
21. Enerly E, Olofsson C, Nygard M. Monitoring human papillomavirus prevalence in urine samples: a review. Clin Epidemiol. 2013; 5:67–79.
Article
22. Hagihara M, Yamagishi Y, Izumi K, Miyazaki N, Suzuki T, Kato H, et al. Comparison of initial stream urine samples and cervical samples for detection of human papillomavirus. J Infect Chemother. 2016; 22:559–62.
Article
23. Van Keer S, Tjalma WA, Pattyn J, Biesmans S, Pieters Z, Van Ostade X, et al. Human papillomavirus genotype and viral load agreement between paired first-void urine and clinician-collected cervical samples. Eur J Clin Microbiol Infect Dis. 2018; 37:859–69.
Article
24. Senkomago V, Des Marais AC, Rahangdale L, Vibat CR, Erlander MG, Smith JS. Comparison of urine specimen collection times and testing fractions for the detection of high-risk human papillomavirus and high-grade cervical precancer. J Clin Virol. 2016; 74:26–31.
Article
25. Asciutto KC, Henningsson AJ, Borgfeldt H, Darlin L, Borgfeldt C. Vaginal and urine self-sampling compared to cervical sampling for HPV-testing with the Cobas 4800 HPV test. Anticancer Res. 2017; 37:4183–7.
Article
26. Vorsters A, Micalessi I, Bilcke J, Ieven M, Bogers J, Van Damme P. Detection of human papillomavirus DNA in urine: a review of the literature. Eur J Clin Microbiol Infect Dis. 2012; 31:627–40.
Article
27. Vorsters A, Van den Bergh J, Micalessi I, Biesmans S, Bogers J, Hens A, et al. Optimization of HPV DNA detection in urine by improving collection, storage, and extraction. Eur J Clin Microbiol Infect Dis. 2014; 33:2005–14.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr