Korean J Pain.  2021 Jun;34(3):262-270. 10.3344/kjp.2021.34.3.262.

Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation

Affiliations
  • 1Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
  • 2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
  • 3Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
  • 4Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan

Abstract

Background
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action.
Methods
Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 µg CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 µg O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor.
Results
The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 µg 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 µg butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1.
Conclusions
O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

Keyword

Butoxamine; Capsaicin; Fabaceae; Hyperalgesia; Molecular Docking Simulation; Neuralgia; Ononis; Pain; Stigmasterol; TRPV Cation Channels

Figure

  • Fig. 1 Mechanical paw withdrawal threshold (PWT) of the left hind paw (ipsilateral to the injections) measured 30 (A), 90 (B) and 150 minutes (C) after intraplantar injection of the vehicle (control) or capsaicin (CAPS), P < 0.05. Data are presented as means ± standard error of the mean. BCTC: [4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide]. aSignificant compared to control. bSignificant compared to CAPS-treated group. cSignificant compared to O. spinosa/CAPS-treated group.

  • Fig. 2 Mechanical paw withdrawal threshold (PWT) of the right hind paw (contralateral to the injections) measured 30 (A), 90 (B) and 150 minutes (C) after intraplantar injection of capsaicin (CAPS) or vehicle. Data are presented as means ± standard error of the mean. BCTC: [4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide].

  • Fig. 3 Representations of the two dimensional intermolecular interactions between transient receptor potential vanilloid 1 (PDB ID: 5IS0) and (A) campesterol, (B) stigmasterol, (C) ononin, and (D) capsazepine.


Cited by  1 articles

Analgesic and anti-inflammatory effects of galangin: a potential pathway to inhibit transient receptor potential vanilloid 1 receptor activation
Kaiwen Lin, Datian Fu, Zhongtao Wang, Xueer Zhang, Canyang Zhu
Korean J Pain. 2024;37(2):151-163.    doi: 10.3344/kjp.23363.


Reference

1. Moran MM, Szallasi A. 2018; Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol. 175:2185–203. DOI: 10.1111/bph.14044. PMID: 28924972. PMCID: PMC5980611.
Article
2. Cavanaugh DJ, Chesler AT, Bráz JM, Shah NM, Julius D, Basbaum AI. 2011; Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci. 31:10119–27. DOI: 10.1523/JNEUROSCI.1299-11.2011. PMID: 21752988. PMCID: PMC3147010.
Article
3. Gilchrist HD, Allard BL, Simone DA. 1996; Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain. 67:179–88. DOI: 10.1016/0304-3959(96)03104-1. PMID: 8895246.
Article
4. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. 1997; The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 389:816–24. DOI: 10.1038/39807. PMID: 9349813.
Article
5. Julius D. 2013; TRP channels and pain. Annu Rev Cell Dev Biol. 29:355–84. DOI: 10.1146/annurev-cellbio-101011-155833. PMID: 24099085.
Article
6. Alsalem M, Wong A, Millns P, Arya PH, Chan MS, Bennett A, et al. 2013; The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms. Br J Pharmacol. 168:1961–74. DOI: 10.1111/bph.12092. PMID: 23278358. PMCID: PMC3623065.
Article
7. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. 2018; A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 9:143–50. DOI: 10.14336/AD.2017.0306. PMID: 29392089. PMCID: PMC5772852.
Article
8. Al-Eisawi DMH. 1998. Field guide to wild flowers of Jordan and neighbouring countries. Jordan Press Foundation;Amman:
9. Al-Snafi AE. 2020; The traditional uses, constituents and pharmacological effects of Ononis spinosa. IOSR J Pharm. 10:53–9. DOI: 10.22159/ijcpr.2019v11i6.36338.
10. Yõlmaz BS, Özbek H, Çitoğlu GS, Uğraş S, Bayram İ, Erdoğan E. 2006; Analgesic and hepatotoxic effects of Ononis spinosa L. Phytother Res. 20:500–3. DOI: 10.1002/ptr.1891. PMID: 16619345.
11. Ergene Öz B, Saltan İşcan G, Küpeli Akkol E, Süntar İ, Keleş H, Bahadır Acıkara Ö. 2017; Wound healing and anti-inflammatory activity of some Ononis taxons. Biomed Pharmacother. 91:1096–105. DOI: 10.1016/j.biopha.2017.05.040. PMID: 28531920.
Article
12. Al-Khalil S. 1995; A survey of plants used in Jordanian traditional medicine. Int J Pharmacogn. 33:317–23. DOI: 10.3109/13880209509065385.
Article
13. Jaffal SM, Abbas MA. 2019; Antinociceptive action of Ononis spinosa leaf extract in mouse pain models. Acta Pol Pharm. 76:299–304. DOI: 10.32383/appdr/99291.
14. Lolignier S, Eijkelkamp N, Wood JN. 2015; Mechanical allodynia. Pflugers Arch. 467:133–9. DOI: 10.1007/s00424-014-1532-0. PMID: 24846747. PMCID: PMC4281368.
Article
15. Khasar SG, McCarter G, Levine JD. 1999; Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol. 81:1104–12. DOI: 10.1152/jn.1999.81.3.1104. PMID: 10085337.
16. Nozadze I, Tsiklauri N, Gurtskaia G, Tsagareli MG. 2016; NSAIDs attenuate hyperalgesia induced by TRP channel activation. Data Brief. 6:668–73. DOI: 10.1016/j.dib.2015.12.055. PMID: 26909384. PMCID: PMC4735497.
Article
17. Ferrier J, Marchand F, Balayssac D. 2016; Assessment of mechanical allodynia in rats using the electronic von frey test. Bio Protoc. 6:e1933. DOI: 10.21769/BioProtoc.1933.
Article
18. Gao Y, Cao E, Julius D, Cheng Y. 2016; TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 534:347–51. DOI: 10.1038/nature17964. PMID: 27281200. PMCID: PMC4911334.
Article
19. Walpole CS, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R, Davies JW, et al. 1994; The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem. 37:1942–54. DOI: 10.1021/jm00039a006. PMID: 8027976.
Article
20. ACD/Labs. ACD/Structure Elucidator [computer program]. Version 2018.1 Toronto (ON).
21. BIOVIA, Dassault Systèmes. BIOVIA discovery studio visualizer [computer program]. Version 2002-2021 San Diego (CA).
22. Abbas MA, Kandil YI, Abbas MM. 2021; Efficacy of extract from Ononis spinosa L. on ethanol-induced gastric ulcer in rats. J Tradit Chin Med. 41:270–5. PMID: 33825407.
23. Fricker PC, Gastreich M, Rarey M. 2004; Automated drawing of structural molecular formulas under constraints. J Chem Inf Comput Sci. 44:1065–78. DOI: 10.1021/ci049958u. PMID: 15154775.
Article
24. Stierand K, Maass PC, Rarey M. 2006; Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics. 22:1710–6. DOI: 10.1093/bioinformatics/btl150. PMID: 16632493.
Article
25. Matsushita Y, Manabe M, Kitamura N, Shibuya I. 2018; Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats. PLoS One. 13:e0191032. DOI: 10.1371/journal.pone.0191032. PMID: 29304162. PMCID: PMC5755923.
Article
26. Filippi A, Caruntu C, Gheorghe RO, Deftu A, Amuzescu B, Ristoiu V. 2016; Catecholamines reduce transient receptor potential vanilloid type 1 desensitization in cultured dorsal root ganglia neurons. J Physiol Pharmacol. 67:843–50. PMID: 28195064.
27. Jeske NA, Diogenes A, Ruparel NB, Fehrenbacher JC, Henry M, Akopian AN, et al. 2008; A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain. 138:604–16. DOI: 10.1016/j.pain.2008.02.022. PMID: 18381233. PMCID: PMC2593399.
Article
28. Chakraborty S, Elvezio V, Kaczocha M, Rebecchi M, Puopolo M. 2017; Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons. J Physiol. 595:2639–60. DOI: 10.1113/JP273455. PMID: 28094445. PMCID: PMC5390893.
Article
29. Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. 2007; Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both beta2- and beta3-adrenergic receptors. Pain. 128:199–208. DOI: 10.1016/j.pain.2006.09.022. PMID: 17084978. PMCID: PMC1905861.
Article
30. Zhu L, Zhao L, Qu R, Zhu HY, Wang Y, Jiang X, et al. 2015; Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine β-synthetase in a rat model of visceral hypersensitivity. Sci Rep. 5:16109. DOI: 10.1038/srep16109. PMID: 26527188. PMCID: PMC4630780.
Article
31. Coutaux A, Adam F, Willer JC, Le Bars D. 2005; Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine. 72:359–71. DOI: 10.1016/j.jbspin.2004.01.010. PMID: 16214069.
Article
32. Benarroch EE. 2016; Dorsal horn circuitry: complexity and implications for mechanisms of neuropathic pain. Neurology. 86:1060–9. DOI: 10.1212/WNL.0000000000002478. PMID: 26888981.
33. Al-Najjar BO. 2018; Synthesis, molecular docking and antioxidant evaluation of benzylidene ketone derivatives. Jordan J Biol Sci. 11:307–13.
34. Benedec D, Vlase L, Oniga I, Toiu A, Tămaş M, Tiperciuc B. 2012; Isoflavonoids from Glycyrrhiza sp. and Ononis spinosa. Farmacia. 60:615–20.
35. Peres MTLP, Monache FD, Pizzolatti MG, Santos ARS, Beirith A, Calixto JB, et al. 1998; Analgesic compounds of Croton urucurana Baillon. Pharmaco-chemical criteria used in their isolation. Phytother Res. 12:209–11. DOI: 10.1002/(SICI)1099-1573(199805)12:3<209::AID-PTR215>3.0.CO;2-P.
36. Lee CW. 1995; Introduction of visceral pain model to test of visceral nociception in the rats. J Korean Pain Soc. 8:25–30.
37. Julius D, Basbaum AI. 2001; Molecular mechanisms of nociception. Nature. 413:203–10. DOI: 10.1038/35093019. PMID: 11557989.
Article
38. Walker CIB, Oliveira SM, Tonello R, Rossato MF, da Silva Brum E, Ferreira J, et al. 2017; Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain. Naunyn Schmiedebergs Arch Pharmacol. 390:1163–72. DOI: 10.1007/s00210-017-1416-x. PMID: 28821921.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr