J Korean Assoc Oral Maxillofac Surg.  2021 Jun;47(3):175-182. 10.5125/jkaoms.2021.47.3.175.

Comparison of sandblasted and acid-etched surface implants and new hydrophilic surface implants in the posterior maxilla using a 3-month early-loading protocol: a randomized controlled trial

Affiliations
  • 1Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
  • 2Office of Human Resources Development, Armed Forces Capital Hospital, Armed Forces Medical Command, Seongnam, Korea
  • 3School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
  • 4Department of Oral and Maxillofacial Surgery, Armed Forces Capital Dental Hospital, Armed Forces Medical Command, Seongnam, Korea

Abstract


Objectives
In this prospective randomized controlled trial, we measured the primary and secondary stability of two surface-treated implants placed in the posterior maxilla, applied 3-month loading protocols, and compared and analyzed the short-term outcomes of the implants.
Patients and Methods
From June 2018 to June 2019, patients with a residual bone height of 4 mm in the posterior maxilla were enrolled and randomly divided into two groups to place SA implants (Osstem Implants, Korea) in Group A and NH implants (Hiossen, USA) in Group B. Finally, 14 implants placed in 13 patients in Group A and 17 implants placed in 14 patients in Group B were analyzed. The measured primary and secondary stability of each implant was represented by implant stability quotient (ISQ), and treatment outcomes were evaluated.
Results
Group A consisted of patients with an average age of 62.2 years (range, 48-80 years), and Group B consisted of patients with an average age of 58.1 years (range, 35-82 years). Primary stability was 73.86±6.40 and 71.24±5.32 in Groups A and B, respectively (P=0.222). Secondary stability was 79.07±5.21 in Group A and 78.29±4.74 in Group B (P=0.667). A steep increase in ISQ during the healing period was observed in Group B, though it was not significant (P=0.265). The mean follow-up period was 378.5±164.6 days in Group A and 385.3±167.9 days in Group B. All implants in each group met the success criteria, and the success rate was 100%.
Conclusion
Two surface-treated implants placed in the posterior maxilla with greater than 4 mm alveolar bone height exhibited successful one-year treatment outcomes if a primary stability of 65 or higher ISQ was obtained and a 3-month early loading protocol was applied.

Keyword

Dental implants; Dental implantation; Artificial teeth; Randomized controlled trial

Figure

  • Fig. 1 Patient enrollment and exclusion. (i: implant, ISQ: implant stability quotient)

  • Fig. 2 Box plot of primary and secondary stability of the two groups of implants. (ISQ: implant stability quotient)

  • Fig. 3 Change of mean primary and secondary stability of the two groups of implants. (ISQ: implant stability quotient)


Cited by  1 articles

Surface structure characteristics of dental implants and their potential changes following installation: a literature review
Pitchaya Aneksomboonpol, Basel Mahardawi, Pheeradej Na Nan, Palawat Laoharungpisit, Thongnard Kumchai, Natthamet Wongsirichat, Napapa Aimjirakul
J Korean Assoc Oral Maxillofac Surg. 2023;49(3):114-124.    doi: 10.5125/jkaoms.2023.49.3.114.


Reference

References

1. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. 1977; Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 16:1–132. PMID: 356184.
2. Zhang S, Wang S, Song Y. 2017; Immediate loading for implant restoration compared with early or conventional loading: a meta-analysis. J Craniomaxillofac Surg. 45:793–803. https://doi.org/10.1016/j.jcms.2016.05.002 . DOI: 10.1016/j.jcms.2016.05.002. PMID: 28351528.
Article
3. Huynh-Ba G, Oates TW, Williams MAH. 2018; Immediate loading vs. early/conventional loading of immediately placed implants in partially edentulous patients from the patients' perspective: a systematic review. Clin Oral Implants Res. 29 Suppl 16:255–69. https://doi.org/10.1111/clr.13278 .
Article
4. Sommer M, Zimmermann J, Grize L, Stübinger S. 2020; Marginal bone loss one year after implantation: a systematic review of different loading protocols. Int J Oral Maxillofac Surg. 49:121–34. https://doi.org/10.1016/j.ijom.2019.03.965 . DOI: 10.1016/j.ijom.2019.03.965. PMID: 31255443.
Article
5. Wennerberg A, Albrektsson T. 2010; On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 25:63–74. PMID: 20209188.
6. Albrektsson T, Wennerberg A. 2019; On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 21 Suppl 1:4–7. https://doi.org/10.1111/cid.12742 . DOI: 10.1111/cid.12742. PMID: 30816639.
Article
7. Sargolzaie N, Samizade S, Arab H, Ghanbari H, Khodadadifard L, Khajavi A. 2019; The evaluation of implant stability measured by resonance frequency analysis in different bone types. J Korean Assoc Oral Maxillofac Surg. 45:29–33. https://doi.org/10.5125/jkaoms.2019.45.1.29 . DOI: 10.5125/jkaoms.2019.45.1.29. PMID: 30847294. PMCID: PMC6400699.
Article
8. Zarb GA, Albrektsson T. 1998; Consensus report: towards optimized treatment outcomes for dental implants. J Prosthet Dent. 80:641. https://doi.org/10.1016/s0022-3913(98)70048-4 . DOI: 10.1016/s0022-3913(98)70048-4. PMID: 9830066.
Article
9. Albrektsson T. 1983; Direct bone anchorage of dental implants. J Prosthet Dent. 50:255–61. https://doi.org/10.1016/0022-3913(83)90027-6 . DOI: 10.1016/0022-3913(83)90027-6. PMID: 6352912.
Article
10. Rabel A, Köhler SG, Schmidt-Westhausen AM. 2007; Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig. 11:257–65. https://doi.org/10.1007/s00784-007-0115-2 . DOI: 10.1007/s00784-007-0115-2. PMID: 17401588.
Article
11. Raghavendra S, Wood MC, Taylor TD. 2005; Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants. 20:425–31. PMID: 15973954.
12. Szmukler-Moncler S, Piattelli A, Favero GA, Dubruille JH. 2000; Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants Res. 11:12–25. https://doi.org/10.1034/j.1600-0501.2000.011001012.x . DOI: 10.1034/j.1600-0501.2000.011001012.x. PMID: 11168189.
Article
13. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. 2004; Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res. 15:520–8. https://doi.org/10.1111/j.1600-0501.2004.01059.x . DOI: 10.1111/j.1600-0501.2004.01059.x. PMID: 15355393.
Article
14. Schwartz Z, Nasazky E, Boyan BD. 2005; Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. Alpha Omegan. 98:9–19. PMID: 16122142.
15. Gottlow J, Barkarmo S, Sennerby L. 2012; An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res. 14 Suppl 1:e204–12. https://doi.org/10.1111/j.1708-8208.2012.00439.x . DOI: 10.1111/j.1708-8208.2012.00439.x. PMID: 22487460.
Article
16. Block MS, Kent JN, Kay JF. 1987; Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg. 45:601–7. https://doi.org/10.1016/0278-2391(87)90270-9 . DOI: 10.1016/0278-2391(87)90270-9. PMID: 3037051.
Article
17. Yang GL, He FM, Hu JA, Wang XX, Zhao SF. 2010; Biomechanical comparison of biomimetically and electrochemically deposited hydroxyapatite-coated porous titanium implants. J Oral Maxillofac Surg. 68:420–7. https://doi.org/10.1016/j.joms.2009.09.014 . DOI: 10.1016/j.joms.2009.09.014. PMID: 20116717.
Article
18. Lee JJ, Rouhfar L, Beirne OR. 2000; Survival of hydroxyapatite-coated implants: a meta-analytic review. J Oral Maxillofac Surg. 58:1372–9. discussion 1379–80. https://doi.org/10.1053/joms.2000.18269 . DOI: 10.1053/joms.2000.18269. PMID: 11117685.
Article
19. Yang Y, Kim KH, Ong JL. 2005; A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials. 26:327–37. https://doi.org/10.1016/j.biomaterials.2004.02.029 . DOI: 10.1016/j.biomaterials.2004.02.029. PMID: 15262475.
Article
20. Yazdani J, Ahmadian E, Sharifi S, Shahi S, Maleki Dizaj S. 2018; A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother. 105:553–7. https://doi.org/10.1016/j.biopha.2018.06.013 . DOI: 10.1016/j.biopha.2018.06.013. PMID: 29886376.
Article
21. Madi M, Zakaria O, Ichinose S, Kasugai S. 2016; Effect of induced periimplantitis on dental implants with and without ultrathin hydroxyapatite coating. Implant Dent. 25:39–46. https://doi.org/10.1097/ID.0000000000000331 . DOI: 10.1097/ID.0000000000000331. PMID: 26384099.
Article
22. Tallarico M, Baldini N, Martinolli M, Xhanari E, Kim YJ, Cervino G, et al. 2019; Do the new hydrophilic surface have any influence on early success rate and implant stability during osseointegration period? Four-month preliminary results from a split-mouth, randomized controlled trial. Eur J Dent. 13:95–101. https://doi.org/10.1055/s-0039-1688737 . DOI: 10.1055/s-0039-1688737. PMID: 31170768. PMCID: PMC6635964.
Article
23. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, et al. 2004; Roughness response genes in osteoblasts. Bone. 35:124–33. https://doi.org/10.1016/j.bone.2004.03.009 . DOI: 10.1016/j.bone.2004.03.009. PMID: 15207748.
Article
24. Terheyden H, Lang NP, Bierbaum S, Stadlinger B. 2012; Osseointegration--communication of cells. Clin Oral Implants Res. 23:1127–35. https://doi.org/10.1111/j.1600-0501.2011.02327.x . DOI: 10.1111/j.1600-0501.2011.02327.x. PMID: 22092345.
Article
25. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. 2005; High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 74:49–58. https://doi.org/10.1002/jbm.a.30320 . DOI: 10.1002/jbm.a.30320. PMID: 15924300.
Article
26. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. 2016; Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016:6285620. https://doi.org/10.1155/2016/6285620 . DOI: 10.1155/2016/6285620. PMID: 27478833. PMCID: PMC4958483.
Article
27. Adell R, Lekholm U, Rockler B, Brånemark PI. 1981; A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 10:387–416. https://doi.org/10.1016/s0300-9785(81)80077-4 . DOI: 10.1016/s0300-9785(81)80077-4. PMID: 6809663.
Article
28. Sundén S, Gröndahl K, Gröndahl HG. 1995; Accuracy and precision in the radiographic diagnosis of clinical instability in Brånemark dental implants. Clin Oral Implants Res. 6:220–6. https://doi.org/10.1034/j.1600-0501.1995.060404.x . DOI: 10.1034/j.1600-0501.1995.060404.x. PMID: 8603113.
Article
29. Meredith N, Alleyne D, Cawley P. 1996; Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 7:261–7. https://doi.org/10.1034/j.1600-0501.1996.070308.x . DOI: 10.1034/j.1600-0501.1996.070308.x. PMID: 9151590.
Article
30. Balleri P, Cozzolino A, Ghelli L, Momicchioli G, Varriale A. 2002; Stability measurements of osseointegrated implants using Osstell in partially edentulous jaws after 1 year of loading: a pilot study. Clin Implant Dent Relat Res. 4:128–32. https://doi.org/10.1111/j.1708-8208.2002.tb00162.x . DOI: 10.1111/j.1708-8208.2002.tb00162.x. PMID: 12516644.
Article
31. Atsumi M, Park SH, Wang HL. 2007; Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants. 22:743–54. PMID: 17974108.
32. Herekar M, Sethi M, Ahmad T, Fernandes AS, Patil V, Kulkarni H. 2014; A correlation between bone (B), insertion torque (IT), and implant stability (S): BITS score. J Prosthet Dent. 112:805–10. https://doi.org/10.1016/j.prosdent.2014.02.011 . DOI: 10.1016/j.prosdent.2014.02.011. PMID: 24726588.
Article
33. Baqain ZH, Moqbel WY, Sawair FA. 2012; Early dental implant failure: risk factors. Br J Oral Maxillofac Surg. 50:239–43. https://doi.org/10.1016/j.bjoms.2011.04.074 . DOI: 10.1016/j.bjoms.2011.04.074. PMID: 21612850.
Article
34. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. 2016; Factors influencing early dental implant failures. J Dent Res. 95:995–1002. https://doi.org/10.1177/0022034516646098 . DOI: 10.1177/0022034516646098. PMID: 27146701.
Article
35. Kim SB, Yun PY, Kim SY, Yi YJ, Kim JY, Kim YK. 2016; Prospective randomized clinical trial of hydrophilic tapered implant placement at maxillary posterior area: 6 weeks and 12 weeks loading. J Adv Prosthodont. 8:396–403. https://doi.org/10.4047/jap.2016.8.5.396 . DOI: 10.4047/jap.2016.8.5.396. PMID: 27826390. PMCID: PMC5099132.
Article
36. Kim YK, Kim JH, Yi YJ, Kwon MJ, Yun PY. 2015; Prospective comparative study of tapered implants with SLA surfaces in the maxillary posterior area according to 3- and 6-month loading time. Int J Periodontics Restorative Dent. 35:271–6. https://doi.org/10.11607/prd.1789 . DOI: 10.11607/prd.1789. PMID: 25738348.
Article
37. Todorovic VS, Vasovic M, Beetge MM, van Zyl AW, Kokovic V. 2017; Stability development of immediately loaded hybrid self-tapping implants inserted in the posterior maxilla: 1-year results of a randomized controlled trial. J Oral Implantol. 43:33–8. https://doi.org/10.1563/aaid-joi-D-16-00143 . DOI: 10.1563/aaid-joi-D-16-00143. PMID: 27897461.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr