J Stroke.  2021 May;23(2):213-222. 10.5853/jos.2020.04399.

How Cerebral Vessel Tortuosity Affects Development and Recurrence of Aneurysm: Outer Curvature versus Bifurcation Type

Affiliations
  • 1Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 2Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 3Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
  • 4Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract

Background and Purpose
Previous studies have assessed the relationship between cerebral vessel tortuosity and intracranial aneurysm (IA) based on two-dimensional brain image analysis. We evaluated the relationship between cerebral vessel tortuosity and IA according to the hemodynamic location using three-dimensional (3D) analysis and studied the effect of tortuosity on the recurrence of treated IA.
Methods
We collected clinical and imaging data from patients with IA and disease-free controls. IAs were categorized into outer curvature and bifurcation types. Computerized analysis of the images provided information on the length of the arterial segment and tortuosity of the cerebral arteries in 3D space.
Results
Data from 95 patients with IA and 95 controls were analyzed. Regarding parent vessel tortuosity index (TI; P<0.01), average TI (P<0.01), basilar artery (BA; P=0.02), left posterior cerebral artery (P=0.03), both vertebral arteries (VAs; P<0.01), and right internal carotid artery (P<0.01), there was a significant difference only in the outer curvature type compared with the control group. The outer curvature type was analyzed, and the occurrence of an IA was associated with increased TI of the parent vessel, average, BA, right middle cerebral artery, and both VAs in the logistic regression analysis. However, in all aneurysm cases, recanalization of the treated aneurysm was inversely associated with increased TI of the parent vessels.
Conclusions
TIs of intracranial arteries are associated with the occurrence of IA, especially in the outer curvature type. IAs with a high TI in the parent vessel showed good outcomes with endovascular treatment.

Keyword

Hemodynamics; Intracranial aneurysm; Hemodynamic stress

Figure

  • Figure 1. Patient selection strategy used in the study. 3D-TOF MRA, three-dimensional time-of-flight magnetic resonance angiography.

  • Figure 2. Schematic diagrams of the tortuosity index measuring process. (A) Example of measuring the internal carotid artery tortuosity index. (B) Example of measuring the basilar artery tortuosity index. 3D-TOF MRA, three-dimensional time-of-flight magnetic resonance angiography; ASL, arterial segment length; Ed, Euclidean distance.

  • Figure 3. (A, B) These are schematic diagrams of the outer curvature-type aneurysm and bifurcation-type aneurysm—at the bottom right of each figure are examples of three-dimensional time-of-flight magnetic resonance angiography of each type of aneurysm. (C, D) These are schematic diagrams showing how the inflow angle changes as the tortuosity increase.


Reference

References

1. Ciurică S, Lopez-Sublet M, Loeys BL, Radhouani I, Natarajan N, Vikkula M, et al. Arterial tortuosity. Hypertension. 2019; 73:951–960.
Article
2. Hughes AD, Martinez-Perez E, Jabbar AS, Hassan A, Witt NW, Mistry PD, et al. Quantification of topological changes in retinal vascular architecture in essential and malignant hypertension. J Hypertens. 2006; 24:889–894.
Article
3. Dolan JM, Kolega J, Meng H. High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng. 2013; 41:1411–1427.
Article
4. Southerland AM, Meschia JF, Worrall BB. Shared associations of nonatherosclerotic, large-vessel, cerebrovascular arteriopathies: considering intracranial aneurysms, cervical artery dissection, moyamoya disease and fibromuscular dysplasia. Curr Opin Neurol. 2013; 26:13–28.
5. Lather HD, Gornik HL, Olin JW, Gu X, Heidt ST, Kim ESH, et al. Prevalence of intracranial aneurysm in women with fibromuscular dysplasia: a report from the US Registry for Fibromuscular Dysplasia. JAMA Neurol. 2017; 74:1081–1087.
6. Kliś KM, Krzyżewski RM, Kwinta BM, Stachura K, Moskała M, Tomaszewski KA. Computer-aided analysis of middle cerebral artery tortuosity: association with aneurysm development. J Neurosurg. 2018; 1–7.
Article
7. Kliś KM, Krzyżewski RM, Kwinta BM, Łasocha B, Brzegowy P, Stachura K, et al. Increased tortuosity of basilar artery might be associated with higher risk of aneurysm development. Eur Radiol. 2020; 30:5625–5632.
Article
8. Kim BJ, Lee SH, Kwun BD, Kang HG, Hong KS, Kang DW, et al. Intracranial aneurysm is associated with high intracranial artery tortuosity. World Neurosurg. 2018; 112:e876–e880.
Article
9. Labeyrie PE, Braud F, Gakuba C, Gaberel T, Orset C, Goulay R, et al. Cervical artery tortuosity is associated with intracranial aneurysm. Int J Stroke. 2017; 12:549–552.
Article
10. Kliś KM, Krzyżewski RM, Kwinta BM, Stachura K, Gąsowski J. Tortuosity of the internal carotid artery and its clinical significance in the development of aneurysms. J Clin Med. 2019; 8:237.
Article
11. Krzyżewski RM, Kliś KM, Kwinta BM, Gackowska M, Stachura K, Starowicz-Filip A, et al. Analysis of anterior cerebral artery tortuosity: association with anterior communicating artery aneurysm rupture. World Neurosurg. 2019; 122:e480–e486.
Article
12. Ryu J, Kim BJ, Lee KM, Kim HG, Choi SK, Kim EJ, et al. Intracranial arterial tortuosity according to the characteristics of intracranial aneurysms. World Neurosurg. 2018; 120:e1185–e1192.
Article
13. Bullitt E, Gerig G, Pizer SM, Lin W, Aylward SR. Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans Med Imaging. 2003; 22:1163–1171.
Article
14. Kim JK, Choi JW, Choi BS, Kim TI, Whang SM, Kim SJ, et al. Sum of the curve indices for estimating the vascular tortuousness of the internal carotid artery. Neurointervention. 2009; 4:101–106.
15. Kulcsár Z, Ugron A, Marosfoi M, Berentei Z, Paál G, Szikora I. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am J Neuroradiol. 2011; 32:587–594.
Article
16. Jeong W, Rhee K. Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment. Comput Math Methods Med. 2012; 2012:782801.
Article
17. Vorobtsova N, Chiastra C, Stremler MA, Sane DC, Migliavacca F, Vlachos P. Effects of vessel tortuosity on coronary hemodynamics: an idealized and patient-specific computational study. Ann Biomed Eng. 2016; 44:2228–2239.
Article
18. Roy D, Milot G, Raymond J. Endovascular treatment of unruptured aneurysms. Stroke. 2001; 32:1998–2004.
Article
19. Spangler KM, Challa VR, Moody DM, Bell MA. Arteriolar tortuosity of the white matter in aging and hypertension. A microradiographic study. J Neuropathol Exp Neurol. 1994; 53:22–26.
Article
20. Han HC. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res. 2012; 49:185–197.
Article
21. Jackson ZS, Dajnowiec D, Gotlieb AI, Langille BL. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thromb Vasc Biol. 2005; 25:957–962.
Article
22. Signorelli F, Sela S, Gesualdo L, Chevrel S, Tollet F, Pailler- Mattei C, et al. Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg. 2018; 115:234–244.
Article
23. Soldozy S, Norat P, Elsarrag M, Chatrath A, Costello JS, Sokolowski JD, et al. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurg Focus. 2019; 47:E11.
Article
24. Virgilio F, Maurel B, Davis M, Hamilton G, Mastracci TM. Vertebral tortuosity index in patients with non-connective tissue disorder-related aneurysm disease. Eur J Vasc Endovasc Surg. 2017; 53:425–430.
Article
25. Pico F, Labreuche J, Amarenco P. Pathophysiology, presentation, prognosis, and management of intracranial arterial dolichoectasia. Lancet Neurol. 2015; 14:833–845.
Article
26. Krzyżewski RM, Kliś KM, Kwinta BM, Gackowska M, Gąsowski J. Increased tortuosity of ACA might be associated with increased risk of ACoA aneurysm development and less aneurysm dome size: a computer-aided analysis. Eur Radiol. 2019; 29:6309–6318.
Article
27. Lee KM, Choi SY, Kim MU, Lee DY, Kim KA, Park S. Effects of anatomical characteristics as factors in abdominal aortic aneurysm rupture: CT aortography analysis. Medicine (Baltimore). 2017; 96:e7236.
28. Bor AS, Tiel Groenestege AT, terBrugge KG, Agid R, Velthuis BK, Rinkel GJ, et al. Clinical, radiological, and flow-related risk factors for growth of untreated, unruptured intracranial aneurysms. Stroke. 2015; 46:42–48.
Article
29. de Rooij NK, Velthuis BK, Algra A, Rinkel GJ. Configuration of the circle of Willis, direction of flow, and shape of the aneurysm as risk factors for rupture of intracranial aneurysms. J Neurol. 2009; 256:45–50.
Article
30. Jung KH. New pathophysiological considerations on cerebral aneurysms. Neurointervention. 2018; 13:73–83.
Article
31. Duan Z, Li Y, Guan S, Ma C, Han Y, Ren X, et al. Morphological parameters and anatomical locations associated with rupture status of small intracranial aneurysms. Sci Rep. 2018; 8:6440.
Article
32. Skodvin TØ, Evju Ø, Sorteberg A, Isaksen JG. Prerupture intracranial aneurysm morphology in predicting risk of rupture: a matched case-control study. Neurosurgery. 2019; 84:132–140.
Article
Full Text Links
  • JOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr