Anat Cell Biol.  2021 Mar;54(1):18-24. 10.5115/acb.20.176.

Assessment of thickness of in vivo autograft tendons around the knee and its correlation with anthropometric data, thickness of patella and anterior cruciate ligament tibial foot print diameter

Affiliations
  • 1Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh, India

Abstract

Inadequate diameters of the autograft tendons are known to be a major cause of graft failure in ligament reconstruction. The purpose of the study was to measure the in-vivo thickness of the available autograft options around the knee and to seek a correlation between the thickness of the tendons and the anthropometric data, patellar thickness and anterior cruciate ligament (ACL) footprint sagittal diameter. Magnetic resonance imaging of 104 consecutive patients with suspected knee injuries were utilized for measurement of the in vivo thickness of pes anserinus tendon (diameter and cross-sectional area [CSA]), patellar tendon (PT) and quadriceps tendon (QT). Pearson’s coefficient was used to find out the relationship between the tendon thickness and anthropometric data, thickness of patella and ACL tibial foot print sagittal diameter. The mean diameters and CSA of the semitendinosus tendon (ST) and gracilis tendon (GT) were 3.77±0.49 mm, 11.62±1.62 mm2 and 2.87±0.27 mm, 6.64±1.18 mm2 respectively. QT and PT thicknesses were 7.36±0.87 mm and 4.50±0.62 mm respectively. Height and the patellar thickness were seen to have moderate correlation with ST and PT thickness. Weak correlation was seen between the other anthropometric variables and tendon thickness. Magnetic resonance imaging (MRI) assessment of tendon sizes is a reliable method with good inter and intra-rater agreement. Assessment of these anatomical structures with help of MRI would be helpful in preoperative planning and can help in identifying those patients at risk of having smaller tendons.

Keyword

Anterior cruciate ligament reconstruction; Magnetic resonance imaging; Patellar ligament; Hamstring tendons; Arthroscopy

Figure

  • Fig. 1 T2 weighted sagittal MRI image showing the largest diameter of patella and QT taken (A) to measure patellar and QT thickness at three points as described. T2 weighted sagittal MRI slice showing largest diameter of ACL tibial footprint taken (B) for ACL footprint measurement. T2 axial image showing thickest patella (C) used to measure patella thickness as described. ACL, anterior cruciate ligament; MRI, magnetic resonance imaging; QT, quadriceps tendon.

  • Fig. 2 Axial T2 weighted MRI slice at the level of the joint used to calculate the cross-sectional area and the diameter of pes anserinus tendons. The free hand tool of the Osirix software used to measure the CSA of pes anserinus tendons (A). Largest diameter at the chosen slice taken as the diameter of pes anserinus tendons (B). CSA, cross-sectional area; GT, gracilis tendon; MRI, magnetic resonance imaging; ST, semitendinosus.

  • Fig. 3 Schematic diagram: method of measurement of patellar and QT thickness on sagittal slice of MRI (A) and method of measurement of pes anserinus tendons’ diameter and CSA in the axial section of MRI (B). CSA, cross-sectional area; MRI, magnetic resonance imaging; QT, quadriceps tendon.


Reference

References

1. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A. 2014; Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy. 30:882–90. DOI: 10.1016/j.arthro.2014.03.028. PMID: 24951356.
Article
2. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. 2012; Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 28:526–31. DOI: 10.1016/j.arthro.2011.11.024. PMID: 22305299.
Article
3. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH. 2013; Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 21:1111–8. DOI: 10.1007/s00167-012-2085-4. PMID: 22688502.
Article
4. O'Brien SJ, Warren RF, Pavlov H, Panariello R, Wickiewicz TL. 1991; Reconstruction of the chronically insufficient anterior cruciate ligament with the central third of the patellar ligament. J Bone Joint Surg Am. 73:278–86. DOI: 10.2106/00004623-199173020-00016. PMID: 1993722.
5. Pagnani MJ, Warner JJ, O'Brien SJ, Warren RF. 1993; Anatomic considerations in harvesting the semitendinosus and gracilis tendons and a technique of harvest. Am J Sports Med. 21:565–71. DOI: 10.1177/036354659302100414. PMID: 8368418.
Article
6. Boisvert CB, Aubin ME, DeAngelis N. 2011; Relationship between anthropometric measurements and hamstring autograft diameter in anterior cruciate ligament reconstruction. Am J Orthop (Belle Mead NJ). 40:293–5. PMID: 21869939.
7. Chiang ER, Ma HL, Wang ST, Hung SC, Liu CL, Chen TH. 2012; Hamstring graft sizes differ between Chinese and Caucasians. Knee Surg Sports Traumatol Arthrosc. 20:916–21. DOI: 10.1007/s00167-011-1653-3. PMID: 21866349.
Article
8. Ma CB, Keifa E, Dunn W, Fu FH, Harner CD. 2010; Can pre-operative measures predict quadruple hamstring graft diameter? Knee. 17:81–3. DOI: 10.1016/j.knee.2009.06.005. PMID: 19740666.
Article
9. Thomas S, Bhattacharya R, Saltikov JB, Kramer DJ. 2013; Influence of anthropometric features on graft diameter in ACL reconstruction. Arch Orthop Trauma Surg. 133:215–8. DOI: 10.1007/s00402-012-1648-7. PMID: 23143291.
Article
10. Wernecke G, Harris IA, Houang MT, Seeto BG, Chen DB, MacDessi SJ. 2011; Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 27:1055–9. DOI: 10.1016/j.arthro.2011.02.035. PMID: 21704471.
Article
11. Zakko P, van Eck CF, Guenther D, Irrgang JJ, Fu FH. 2017; Can we predict the size of frequently used autografts in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. 25:3704–10. DOI: 10.1007/s00167-015-3695-4. PMID: 26183732.
Article
12. Bickel BA, Fowler TT, Mowbray JG, Adler B, Klingele K, Phillips G. 2008; Preoperative magnetic resonance imaging cross-sectional area for the measurement of hamstring autograft diameter for reconstruction of the adolescent anterior cruciate ligament. Arthroscopy. 24:1336–41. DOI: 10.1016/j.arthro.2008.07.012. PMID: 19038703.
Article
13. Camarda L, Grassedonio E, Albano D, Galia M, Midiri M, D'Arienzo M. 2018; MRI evaluation to predict tendon size for knee ligament reconstruction. Muscles Ligaments Tendons J. 7:478–84. DOI: 10.32098/mltj.03.2017.10. PMID: 29387641. PMCID: PMC5774921.
Article
14. Beyzadeoglu T, Akgun U, Tasdelen N, Karahan M. 2012; Prediction of semitendinosus and gracilis autograft sizes for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 20:1293–7. DOI: 10.1007/s00167-011-1770-z. PMID: 22116264.
Article
15. Hamada M, Shino K, Mitsuoka T, Abe N, Horibe S. 1998; Cross-sectional area measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction. Arthroscopy. 14:696–701. DOI: 10.1016/S0749-8063(98)70096-9. PMID: 9788365.
Article
16. Challa S, Satyaprasad J. 2013; Hamstring graft size and anthropometry in south Indian population. J Clin Orthop Trauma. 4:135–8. DOI: 10.1016/j.jcot.2013.09.005. PMID: 26403553. PMCID: PMC3880434.
Article
17. Goyal S, Matias N, Pandey V, Acharya K. 2016; Are pre-operative anthropometric parameters helpful in predicting length and thickness of quadrupled hamstring graft for ACL reconstruction in adults? A prospective study and literature review. Int Orthop. 40:173–81. DOI: 10.1007/s00264-015-2818-3. PMID: 26105766.
Article
18. Sundararajan SR, Rajagopalakrishnan R, Rajasekaran S. 2016; Is height the best predictor for adequacy of semitendinosus-alone anterior cruciate ligament reconstruction? A study of hamstring graft dimensions and anthropometric measurements. Int Orthop. 40:1025–31. DOI: 10.1007/s00264-015-2882-8. PMID: 26156726.
Article
19. Chang CB, Seong SC, Kim TK. 2009; Preoperative magnetic resonance assessment of patellar tendon dimensions for graft selection in anterior cruciate ligament reconstruction. Am J Sports Med. 37:376–82. DOI: 10.1177/0363546508324971. PMID: 19036719.
Article
20. Muhamed R, Saralaya VV, Murlimanju BV, Chettiar GK. 2017; In vivo magnetic resonance imaging morphometry of the patella bone in South Indian population. Anat Cell Biol. 50:99–103. DOI: 10.5115/acb.2017.50.2.99. PMID: 28713612. PMCID: PMC5509906.
Article
21. Stäubli HU, Rauschning W. 1994; Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc. 2:138–46. DOI: 10.1007/BF01467915. PMID: 7584195.
22. Hodges CT, Shelton TJ, Bateni CP, Henrichon SS, Skaggs AW, Boutin RD, Lee CA, Haus BM, Marder RA. 2019; The medial epicondyle of the distal femur is the optimal location for MRI measurement of semitendinosus and gracilis tendon cross-sectional area. Knee Surg Sports Traumatol Arthrosc. 27:3498–504. DOI: 10.1007/s00167-019-05421-6. PMID: 30809723.
Article
23. Hanna A, Hollnagel K, Whitmer K, John C, Johnson B, Godin J, Miller T. 2019; Reliability of magnetic resonance imaging prediction of anterior cruciate ligament autograft size and comparison of radiologist and orthopaedic surgeon predictions. Orthop J Sports Med. 7:2325967119889593. DOI: 10.1177/2325967119889593. PMID: 31858015. PMCID: PMC6913056.
Article
24. Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM. 2008; Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med. 36:2204–9. DOI: 10.1177/0363546508319901. PMID: 18725653.
25. Schwartzberg R, Burkhart B, Lariviere C. 2008; Prediction of hamstring tendon autograft diameter and length for anterior cruciate ligament reconstruction. Am J Orthop (Belle Mead NJ). 37:157–9. PMID: 18438472.
26. Loo WL, Liu BYE, Lee YHD, Soon YHM. 2010; Can we predict ACL hamstring graft sizes in the Asian male? A clinical relationship study of anthropometric features and 4-strand hamstring graft sizes. Malays Orthop J. 4:9–12. DOI: 10.5704/MOJ.1007.001.
Article
27. Cobanoglu M, Ozgezmez FT, Omurlu IK, Ozkan I, Savk SO, Cullu E. 2016; Preoperative magnetic resonance imaging evaluation of semitendinosus tendon in anterior cruciate ligament reconstruction: does this have an effect on graft choice? Indian J Orthop. 50:499–504. DOI: 10.4103/0019-5413.189612. PMID: 27746492. PMCID: PMC5017171.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr