Korean J Gastroenterol.  2021 Mar;77(3):99-103. 10.4166/kjg.2021.031.

Large Animal Models in Pancreas and Biliary Disease

Affiliations
  • 1Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea

Abstract

Rodent models, which have played important roles in preclinical research of pancreas and biliary diseases, have some limitations to translating data from rodent models to human diseases. Large animal models have recently been developed to overcome these limitations and perform translational research of medical devices and drugs in pancreas and biliary diseases. Preclinical studies using large animal models are necessary before clinical application, especially for the research and development of equipment, instrumentation, and techniques in pancreato-biliary diseases. As long as the endoscope used in humans can enter an organ, there appears to be no limitation in terms of species or organ for endoscopic experiments of large animal models. Investigators have mainly used swine for pancreas and biliary endoscopic experiments. Until now, unique swine models that investigators have been established include the normal bile duct model, bile duct dilation model, bile duct dilation+direct peroral cholangioscopy model, benign biliary stricture model, hilar biliary obstruction model, and acute pancreatitis (post-ERCP pancreatitis) model. Many preclinical studies have been performed using these established endoscopy-based large animal models to develop novel medical devices. Furthermore, porcine pancreatic cancer models induced by a transgenic or orthotopic method are currently under development. These models appear to be available for general use in the future and will have multiple potential preclinical and clinical applications.

Keyword

Models; animal; Pancreatic diseases; Bile duct diseases

Reference

1. Principe DR, Overgaard NH, Park AJ, et al. 2018; KRASG12D and TP53R167H cooperate to induce pancreatic ductal adenocarcinoma in Sus scrofa pigs. Sci Rep. 8:12548. DOI: 10.1038/s41598-018-30916-6. PMID: 30135483. PMCID: PMC6105629.
Article
2. Kararli TT. 1995; Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 16:351–380. DOI: 10.1002/bdd.2510160502. PMID: 8527686.
Article
3. Ziegler A, Gonzalez L, Blikslager A. 2016; Large animal models: the key to translational discovery in digestive disease research. Cell Mol Gastroenterol Hepatol. 2:716–724. DOI: 10.1016/j.jcmgh.2016.09.003. PMID: 28090566. PMCID: PMC5235339.
4. Bakhru MR, Foley PL, Gatesman J, Schmitt T, Moskaluk CA, Kahaleh M. 2011; Fully covered self-expanding metal stents placed temporarily in the bile duct: safety profile and histologic classification in a porcine model. BMC Gastroenterol. 11:76. DOI: 10.1186/1471-230X-11-76. PMID: 21689439. PMCID: PMC3142530.
Article
5. Cho JH, Lee KH, Kim JM, Kim YS, Lee DH, Jeong S. 2017; Safety and effectiveness of endobiliary radiofrequency ablation according to the different power and target temperature in a swine model. J Gastroenterol Hepatol. 32:521–526. DOI: 10.1111/jgh.13472. PMID: 27300312.
Article
6. Cho JH, Jeong S, Kim EJ, Kim JM, Kim YS, Lee DH. 2018; Long-term results of temperature-controlled endobiliary radiofrequency ablation in a normal swine model. Gastrointest Endosc. 87:1147–1150. DOI: 10.1016/j.gie.2017.09.013. PMID: 28958907.
Article
7. Goldberg SN, Mallery S, Gazelle GS, Brugge WR. 1999; EUS-guided radiofrequency ablation in the pancreas: results in a porcine model. Gastrointest Endosc. 50:392–401. DOI: 10.1053/ge.1999.v50.98847. PMID: 10462663.
Article
8. Varadarajulu S, Jhala NC, Drelichman ER. 2009; EUS-guided radiofrequency ablation with a prototype electrode array system in an animal model (with video). Gastrointest Endosc. 70:372–376. DOI: 10.1016/j.gie.2009.03.008. PMID: 19560138.
Article
9. Kim HJ, Seo DW, Hassanuddin A, et al. 2012; EUS-guided radiofrequency ablation of the porcine pancreas. Gastrointest Endosc. 76:1039–1043. DOI: 10.1016/j.gie.2012.07.015. PMID: 23078928.
Article
10. Lee KW, Lee JM, Choi HS, et al. 2020; Oct. 20. Novel ablation therapy using endoscopic irreversible electroporation in the bile duct: a pilot animal study. Clin Endosc. [Epub ahead of print]. DOI: 10.5946/ce.2020.126. PMID: 33076633.
Article
11. Lee JM, Choi HS, Chun HJ, et al. 2019; EUS-guided irreversible electroporation using endoscopic needle-electrode in porcine pancreas. Surg Endosc. 33:658–662. DOI: 10.1007/s00464-018-6425-4. PMID: 30374794.
Article
12. Park JS, Kwon CI, Jeong S, Kim K, Moon JH, Lee DH. 2014; Development of a swine bile duct dilation model using endoclips or a detachable snare under cap-assisted endoscopy. Gastrointest Endosc. 80:325–329. DOI: 10.1016/j.gie.2014.03.036. PMID: 24852106.
13. Moon JH, Choi HJ, Kim DC, et al. 2014; A newly designed fully covered metal stent for lumen apposition in EUS-guided drainage and access: a feasibility study (with videos). Gastrointest Endosc. 79:990–995. DOI: 10.1016/j.gie.2014.02.015. PMID: 24721518.
Article
14. Bae BC, Yang SG, Jeong S, et al. 2014; Polymeric photosensitizer- embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials. 35:8487–8495. DOI: 10.1016/j.biomaterials.2014.07.001. PMID: 25043500.
15. Kwon CI, Kim G, Jeong S, et al. 2017; The stent patency and migration rate of different shaped plastic stents in bile flow phantom model and in vivo animal bile duct dilation model. Dig Dis Sci. 62:1246–1255. DOI: 10.1007/s10620-017-4514-1. PMID: 28281171.
Article
16. Park JS, Jeong S, Kwon CI, et al. 2016; Development of an in vivo swine model of biliary dilatation-based direct peroral cholangioscopy. Dig Endosc. 28:592–598. DOI: 10.1111/den.12624. PMID: 26836784.
17. Kwon CI, Son JS, Kim KS, et al. 2020; Mechanical properties and degradation process of biliary self-expandable biodegradable stents. Dig Endosc. [Epub ahead of print]. DOI: 10.1111/den.13916. PMID: 33319399.
Article
18. Rumalla A, Petersen BT, Baron TH, et al. 2003; Development of a swine model for benign stenosis of the bile duct by endoscopic application of intraluminal thermal injury. Gastrointest Endosc. 57:73–77. DOI: 10.1067/mge.2003.27. PMID: 12518135.
Article
19. Park JS, Jeong S, Kim JM, Park SS, Lee DH. 2016; Development of a swine benign biliary stricture model using endoscopic biliary radiofrequency ablation. J Korean Med Sci. 31:1438–1444. DOI: 10.3346/jkms.2016.31.9.1438. PMID: 27510388. PMCID: PMC4974186.
Article
20. Park JS, Jeong S, Lee DH. 2018; Effects of mitomycin-eluting metal stents on benign biliary stricture in a swine model: A feasibility study. Dig Endosc. 30:797–798. DOI: 10.1111/den.13248. PMID: 30058097.
Article
21. Park JS, Jeong S, Lee DH, Kim JM, Kim SM, Kang HW. 2021; The use of a 532-nm laser fitted with a balloon and a cylindrical light diffuser to treat benign biliary stricture: a pilot study. Lasers Med Sci. 36:25–31. DOI: 10.1007/s10103-020-02992-6. PMID: 32157583.
Article
22. Park JS, Jeong S, Kobayashi M, Lee DH. 2019; Safety, efficacy, and removability of a fully covered multi-hole metal stent in a swine model of hilar biliary stricture: a feasibility study. Endosc Int Open. 7:E498–E503. DOI: 10.1055/a-0846-0775. PMID: 31041366. PMCID: PMC6447406.
Article
23. Park JS, Jeong S, Kim JM, Lee BH, Kim JM, Lee DH. 2019; Development of an acute pancreatitis porcine model based on endoscopic retrograde infusion of contrast medium or sodium taurocholate. Korean J Intern Med. 34:1244–1251. DOI: 10.3904/kjim.2017.367. PMID: 30428647. PMCID: PMC6823576.
Article
24. Grupp K, Erbes J, Poppe A, et al. 2019; Melatonin treatment of pigs with acute pancreatitis reduces inflammatory reaction of pancreatic tissue and enhances fitness score of pigs: experimental research. World J Emerg Surg. 14:18. DOI: 10.1186/s13017-019-0237-2. PMID: 31007709. PMCID: PMC6458612.
Article
25. Baldo CF, Capellini VK, Celotto AC, et al. 2013; Guanylate cyclase inhibition by methylene blue in circulatory shock caused by acute necrotizing pancreatitis: a word of caution based on a porcine model. Rev Col Bras Cir. 40:480–489. DOI: 10.1590/S0100-69912013000600011. PMID: 24573627.
26. Wang H, Zhang ZH, Yan XW, et al. 2005; Amelioration of hemodynamics and oxygen metabolism by continuous venovenous hemofiltration in experimental porcine pancreatitis. World J Gastroenterol. 11:127–131. DOI: 10.3748/wjg.v11.i1.127. PMID: 15609411. PMCID: PMC4205371.
Article
27. Meriläinen S, Mäkelä J, Anttila V, et al. 2008; Acute edematous and necrotic pancreatitis in a porcine model. Scand J Gastroenterol. 43:1259–1268. DOI: 10.1080/00365520802158580. PMID: 18609130.
Article
28. Park JS, Jeong S, Kim JM, Lee DH. 2020; Preventative effect of nafamostat mesilate infusion into the main pancreatic duct on post-ERCP pancreatitis in a porcine model: initial pilot study. J Invest Surg. 33:325–331. DOI: 10.1080/08941939.2018.1511015. PMID: 30884994.
Article
29. Schook LB, Collares TV, Hu W, et al. 2015; A genetic porcine model of cancer. PLoS One. 10:e0128864. DOI: 10.1371/journal.pone.0128864. PMID: 26132737. PMCID: PMC4488487.
Article
30. Ericsson AC, Crim MJ, Franklin CL. 2013; A brief history of animal modeling. Mo Med. 110:201–205. PMID: 23829102. PMCID: PMC3979591.
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr