1. Fournier JE, Northrup V, Clark C, Fraser J, Howlett M, Atkinson P, et al. Evaluation of BD Vacutainer Barricor blood collection tubes for routine chemistry testing on a Roche Cobas 8000 Platform. Clin Biochem. 2018; 58:94–9.
Article
2. Füzéry AK, Raizman JE, Goudreau BL, Moses K, Niemann K, Park J, et al. The BD Barricor blood collection tube is an acceptable and robust alternative to the PST for use with the Beckman AccuTnI+3 assay. Clin Biochem. 2017; 50:851–7.
Article
3. Dupuy AM, Badiou S, Daubin D, Bargnoux AS, Magnan C, Klouche K, et al. Comparison of Barricor vs. lithium heparin tubes for selected routine biochemical analytes and evaluation of post centrifugation stability. Biochem Med (Zagreb). 2018; 28:020902.
Article
4. Cadamuro J, Mrazek C, Leichtle AB, Kipman U, Felder TK, Wiedemann H, et al. Influence of centrifugation conditions on the results of 77 routine clinical chemistry analytes using standard vacuum blood collection tubes and the new BD-Barricor tubes. Biochem Med (Zagreb). 2018; 28:010704.
Article
5. Arslan FD, Karakoyun I, Basok BI, Aksit MZ, Baysoy A, Ozturk YK, et al. The local clinical validation of a new lithium heparin tube with a barrier: BD Vacutainer Barricor LH Plasma tube. Biochem Med (Zagreb). 2017; 27:030706.
Article
6. Padoan A, Zaninotto M, Piva E, Sciacovelli L, Aita A, Tasinato A, et al. Quality of plasma samples and BD Vacutainer Barricor tubes: effects of centrifugation. Clin Chim Acta. 2018; 483:271–4.
Article
7. Ramakers C. BD Vacutainer Barricor tube in the emergency department: reduced hemolysis rates using partial draw tubes with reduced vacuum. Clin Chem Lab Med. 2018; 56:e31–2.
Article
9. Clinical laboratory improvement amendments of 1988: final rule. Department of Health and Human Services, Health Care Financing Administration. Federal Register 57, no. 7146. 1992.
10. Erdal EP, Mitra D, Khangulov VS, Church S, Plokhoy E. The economic impact of poor sample quality in clinical chemistry laboratories: results from a global survey. Ann Clin Biochem. 2017; 54:230–9.
Article
11. Boyanton BL Jr, Blick KE. Stability studies of twenty-four analytes in human plasma and serum. Clin Chem. 2002; 48:2242–7.
Article
12. Schrapp A, Mory C, Duflot T, Pereira T, Imbert L, Lamoureux F. The right blood collection tube for therapeutic drug monitoring and toxicology screening procedures: standard tubes, gel or mechanical separator? Clin Chim Acta. 2019; 488:196–201.
Article
13. Lippi G, Salvagno GL, Montagnana M, Brocco G, Guidi GC. Influence of hemolysis on routine clinical chemistry testing. Clin Chem Lab Med. 2006; 44:311–6.
Article
14. Zhang DJ, Elswick RK, Miller WG, Bailey JL. Effect of serum-clot contact time on clinical chemistry laboratory results. Clin Chem. 1998; 44:1325–33.
Article
15. Monneret D, Godmer A, Le Guen R, Bravetti C, Emeraud C, Marteau A, et al. Stability of routine biochemical analytes in whole blood and plasma from lithium heparin gel tubes during 6-hr storage. J Clin Lab Anal. 2016; 30:602–9.
Article
16. Chan FK, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol. 2013; 979:65–70.
Article
17. Bowen RA, Hortin GL, Csako G, Otañez OH, Remaley AT. Impact of blood collection devices on clinical chemistry assays. Clin Biochem. 2010; 43:4–25.
Article
18. Dimeski G, Yow KS, Brown NN. What is the most suitable blood collection tube for glucose estimation? Ann Clin Biochem. 2015; 52:270–5.
Article
19. Lippi G, Salvagno GL, Lampus S, Danese E, Gelati M, Bovo C, et al. Impact of blood cell counts and volumes on glucose concentration in uncentrifuged serum and lithium-heparin blood tubes. Clin Chem Lab Med. 2018; 56:2125–31.
Article