1. Liu N, Lu M, Tian X, Han Z. 2007; Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol. 211:279–286. DOI:
10.1002/jcp.20978. PMID:
17195167.
Article
2. Saunders A, Faiola F, Wang J. 2013; Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells. 31:1227–1236. DOI:
10.1002/stem.1384. PMID:
23653415. PMCID:
PMC3706551.
Article
9. Schaefer L, Reinhardt DP. 2016; Special issue: Extracellular matrix: therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev. 97:1–3. DOI:
10.1016/j.addr.2016.01.001. PMID:
26872878.
Article
10. Bökel C, Brown NH. 2002; Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell. 3:311–321. DOI:
10.1016/S1534-5807(02)00265-4. PMID:
12361595.
12. Vecino E, Heller JP, Veiga-Crespo P, Martin KR, Fawcett JW. 2015; Influence of extracellular matrix components on the expression of integrins and regeneration of adult retinal ganglion cells. PLoS One. 10:e0125250. DOI:
10.1371/journal.pone.0125250. PMID:
26018803. PMCID:
PMC4446304.
Article
13. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G. 2006; Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 440:1199–1203. DOI:
10.1038/nature04697. PMID:
16565704.
Article
14. Lovasco LA, Gustafson EA, Seymour KA, de Rooij DG, Freiman RN. 2015; TAF4b is required for mouse spermatogonial stem cell development. Stem Cells. 33:1267–1276. DOI:
10.1002/stem.1914. PMID:
25727968. PMCID:
PMC4376611.
Article
15. Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, Jijiwa M, Takahashi M, Ogura A, Shinohara T. 2015; Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Reports. 4:489–502. DOI:
10.1016/j.stemcr.2015.01.010. PMID:
25684228. PMCID:
PMC4375941.
Article
16. Han NR, Park YH, Yun JI, Park HJ, Park MH, Kim MS, Choi JH, Lee E, Gong SP, Lim JM, Lee ST. 2014; Determination of feeder cell-based cellular niches supporting the colonization and maintenance of spermatogonial stem cells from prepubertal domestic cat testes. Reprod Domest Anim. 49:705–710. DOI:
10.1111/rda.12351. PMID:
24978324.
Article
17. Lee KH, Lee WY, Kim JH, Park CK, Do JT, Kim JH, Choi YS, Kim NH, Song H. 2016; Subculture of germ cell-derived colonies with GATA4-positive feeder cells from neonatal pig testes. Stem Cells Int. 2016:6029271. DOI:
10.1155/2016/6029271. PMID:
26880974. PMCID:
PMC4736562.
Article
18. Park MH, Park JE, Kim MS, Lee KY, Yun JI, Choi JH, Lee E, Lee ST. 2014; Identification of niche conditions supporting short-term culture of spermatogonial stem cells derived from porcine neonatal testis. J Emb Trans. 29:221–228. DOI:
10.12750/JET.2014.29.3.221.
Article
19. He BR, Lu F, Zhang L, Hao DJ, Yang H. 2015; An alternative long-term culture system for highly-pure mouse spermatogonial stem cells. J Cell Physiol. 230:1365–1375. DOI:
10.1002/jcp.24880. PMID:
25503338.
Article
20. Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, Østerås M, Whitley A, Yuan W, Gan X, Goodson M, Klenerman P, Satpathy A, Mathis D, Benoist C, Adams DJ, Mott R, Flint J. 2010; Commercially available outbred mice for genome-wide association studies. PLoS Genet. 6:e1001085. DOI:
10.1371/journal.pgen.1001085. PMID:
20838427. PMCID:
PMC2932682.
Article
21. Aldinger KA, Sokoloff G, Rosenberg DM, Palmer AA, Millen KJ. 2009; Genetic variation and population substructure in outbred CD-1 mice: implications for genome-wide association studies. PLoS One. 4:e4729. DOI:
10.1371/journal.pone.0004729. PMID:
19266100. PMCID:
PMC2649211.
Article
22. Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P, Goodwin N, Cheng R, Pomp D, Palmer A, Chesler EJ, Broman KW, Churchill GA. 2014; Quantitative trait locus mapping methods for diversity outbred mice. G3 (Bethesda). 4:1623–1633. DOI:
10.1534/g3.114.013748. PMID:
25237114. PMCID:
PMC4169154.
Article
23. Chia R, Achilli F, Festing MF, Fisher EM. 2005; The origins and uses of mouse outbred stocks. Nat Genet. 37:1181–1186. DOI:
10.1038/ng1665. PMID:
16254564.
Article
27. Baert Y, Stukenborg JB, Landreh M, De Kock J, Jörnvall H, Söder O, Goossens E. 2015; Derivation and characterization of a cytocompatible scaffold from human testis. Hum Reprod. 30:256–267. DOI:
10.1093/humrep/deu330. PMID:
25505010.
Article
28. Yan HH, Cheng CY. 2006; Laminin alpha 3 forms a complex with beta3 and gamma3 chains that serves as the ligand for alpha 6beta1-integrin at the apical ectoplasmic specialization in adult rat testes. J Biol Chem. 281:17286–17303. DOI:
10.1074/jbc.M513218200. PMID:
16608848.
Article
29. Glattauer V, Irving-Rodgers HF, Rodgers RJ, Stockwell S, Brownlee AG, Werkmeister JA, Ramshaw JA. 2007; Examination of basement membrane components associated with the bovine seminiferous tubule basal lamina. Reprod Fertil Dev. 19:473–481. DOI:
10.1071/RD06013. PMID:
17394796.
Article
30. Harvey SJ, Perry J, Zheng K, Chen D, Sado Y, Jefferson B, Ninomiya Y, Jacobs R, Hudson BG, Thorner PS. 2006; Sequential expression of type IV collagen networks: testis as a model and relevance to spermatogenesis. Am J Pathol. 168:1587–1597. DOI:
10.2353/ajpath.2006.050816. PMID:
16651625. PMCID:
PMC1606577.
Article
31. Gersdorff N, Kohfeldt E, Sasaki T, Timpl R, Miosge N. 2005; Laminin gamma3 chain binds to nidogen and is located in murine basement membranes. J Biol Chem. 280:22146–22153. DOI:
10.1074/jbc.M501875200. PMID:
15824114.
Article
35. Giebel J, Löster K, Rune GM. 1997; Localization of integrin beta 1, alpha 1, alpha 5 and alpha 9 subunits in the rat testis. Int J Androl. 20:3–9. DOI:
10.1046/j.1365-2605.1997.d01-105.x. PMID:
9202984.