1.Coelho-Filho OR., Rickers C., Kwong RY., Jerosch-Herold M. MR myocardial perfusion imaging. Radiology. 2013. 266:701–715.
Article
2.Schulz-Menger J., Bluemke DA., Bremerich J, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013. 15:35.
Article
3.Min JY., Ko SM., Song IY., Yi JG., Hwang HK., Shin JK. Comparison of the diagnostic accuracies of 1.5T and 3T stress myocardial perfusion cardiovascular magnetic resonance for detecting significant coronary artery disease. Korean J Radiol. 2018. 19:1007–1020.
Article
4.Chung SY., Lee KY., Chun EJ, et al. Comparison of stress perfusion MRI and SPECT for detection of myocardial ischemia in patients with angiographically proven three-vessel coronary artery disease. AJR Am J Roentgenol. 2010. 195:356–362.
Article
5.Panting JR., Gatehouse PD., Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002. 346:1948–1953.
Article
6.Maron BJ., Wolfson JK., Epstein SE., Roberts WC. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986. 8:545–557.
Article
7.Maron MS., Olivotto I., Maron BJ, et al. The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009. 54:866–875.
Article
8.Kim YK., Park EA., Park SJ, et al. Non-ischemic perfusion defects due to delayed arrival of contrast material on stress perfusion cardiac magnetic resonance imaging after coronary artery bypass graft surgery. Korean J Radiol. 2014. 15:188–194.
Article
9.Tejani FH., Thompson RC., Kristy R., Bukofzer S. Effect of caffeine on SPECT myocardial perfusion imaging during regadenoson pharmacologic stress: a prospective, randomized, multicenter study. Int J Cardiovasc Imaging. 2014. 30:979–989.
Article
10.Kovacs D., Pivonka R., Khosla PG., Khosla S. Effect of caffeine on myocardial perfusion imaging using single photon emission computed tomography during adenosine pharmacologic stress. Am J Ther. 2008. 15:431–434.
Article
11.Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010. 12:57.
Article
12.Schwitter J., DeMarco T., Kneifel S, et al. Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation. 2000. 101:2696–2702.
13.Kelle S., Graf K., Dreysse S., Schnackenburg B., Fleck E., Klein C. Evaluation of contrast wash-in and peak enhancement in adenosine first pass perfusion CMR in patients post bypass surgery. J Cardiovasc Magn Reson. 2010. 12:28.
Article
14.Keelan PC., Bielak LF., Ashai K, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation. 2001. 104:412–417.
Article
15.Rieber J., Huber A., Erhard I, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006. 27:1465–1471.
Article
16.Kroll K., Wilke N., Jerosch-Herold M, et al. Modeling regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol. 1996. 271:H1643–1655.
Article
17.Jerosch-Herold M., Swingen C., Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002. 29:886–897.
Article
18.Ishida M., Schuster A., Morton G, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011. 13:28.
Article
19.Christian TF., Aletras AH., Arai AE. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008. 27:1271–1277.
Article
20.Gatehouse PD., Elkington AG., Ablitt NA., Yang GZ., Pennell DJ., Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004. 20:39–45.
Article
21.Jerosch-Herold M., Wilke N., Wang Y, et al. Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging. 1999. 15:453–464.
22.Kim RJ., Shah DJ., Judd RM. How we perform delayed enhancement imaging. J Cardiovasc Magn Reson. 2003. 5:505–514.
Article
23.Mahrholdt H., Wagner A., Judd RM., Sechtem U., Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005. 26:1461–1474.
Article
24.Lee JW., Jeong YJ., Lee G, et al. Predictive value of cardiac magnetic resonance imaging-derived myocardial strain for poor outcomes in patients with acute myocarditis. Korean J Radiol. 2017. 18:643–654.
Article
25.Kim RJ., Wu E., Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000. 343:1445–1453.
Article
26.Klem I., Heitner JF., Shah DJ, et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006. 47:1630–1638.
Article
27.Abbas A., Matthews GH., Brown IW., Shambrook JS., Peebles CR., Harden SP. Cardiac MR assessment of microvascular obstruction. Br J Radiol. 2015. 88:20140470.
Article
28.Rajiah P., Desai MY., Kwon D., Flamm SD. MR imaging of myocardial infarction. Radiographics. 2013. 33:1383–1412.
Article
29.Saremi F., Grizzard JD., Kim RJ. Optimizing cardiac MR imaging: practical remedies for artifacts. Radiographics. 2008. 28:1161–1187.
Article
30.Kellman P., Arai AE., McVeigh ER., Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med. 2002. 47:372–383.
Article
31.Kellman P., Arai AE. Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging. 2012. 36:529–542.
Article
32.Farrelly C., Rehwald W., Salerno M, et al. Improved detection of subendocardial hyperenhancement in myocardial infarction using dark blood-pool delayed enhancement MRI. AJR Am J Roentgenol. 2011. 196:339–348.
Article
33.Bondarenko O., Beek AM., Hofman MB, et al. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson. 2005. 7:481–485.
Article
34.Lim J., Park EA., Song YS., Lee W. Single-dose gadoterate meglumine for 3T late gadolinium enhancement mri for the assessment of chronic myocardial infarction: intraindividual comparison with conventional double-dose 1.5T MRI. Korean J Radiol. 2018. 19:372–380.
Article
35.Amado LC., Gerber BL., Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004. 44:2383–2389.
Article
36.Flett AS., Hasleton J., Cook C, et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging. 2011. 4:150–156.
Article
37.Aljaroudi WA., Flamm SD., Saliba W., Wilkoff BL., Kwon D. Role of CMR imaging in risk stratification for sudden cardiac death. JACC Cardiovasc Imaging. 2013. 6:392–406.
Article
38.Moon JC., Messroghli DR., Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013. 15:92.
Article
39.Ugander M., Bagi PS., Oki AJ, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012. 5:596–603.
Article
40.Karamitsos TD., Piechnik SK., Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013. 6:488–497.
Article
41.Sado DM., White SK., Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013. 6:392–398.
Article
42.Pedersen SF., Thrysøe SA., Robich MP, et al. Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction. J Cardiovasc Magn Reson. 2012. 14:59.
Article
43.Messroghli DR., Radjenovic A., Kozerke S., Higgins DM., Sivananthan MU., Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004. 52:141–146.
44.Arheden H., Saeed M., Higgins CB, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999. 211:698–708.
45.Taylor AJ., Salerno M., Dharmakumar R., Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016. 9:67–81.
46.Kellman P., Wilson JR., Xue H., Ugander M., Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012. 14:63.
Article
47.Miller CA., Naish JH., Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013. 6:373–383.
Article
48.Chen Y., Zheng X., Jin H, et al. Role of myocardial extracellular volume fraction measured with magnetic resonance imaging in the prediction of left ventricular functional outcome after revascularization of chronic total occlusion of coronary arteries. Korean J Radiol. 2019. 20:83–93.
Article
49.Lee HG., Shim J., Choi JI., Kim YH., Oh YW., Hwang SH. Use of cardiac computed tomography and magnetic resonance imaging in case management of atrial fibrillation with catheter ablation. Korean J Radiol. 2019. 20:695–708.
Article
50.Treibel TA., Fontana M., Maestrini V, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016. 9:54–63.
51.Shang Y., Zhang X., Zhou X., Wang J. Extracellular volume fraction measurements derived from the longitudinal relaxation of blood-based synthetic hematocrit may lead to clinical errors in 3 T cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2018. 20:56.
Article
52.Kammerlander AA., Duca F., Binder C, et al. Extracellular volume quantification by cardiac magnetic resonance imaging without hematocrit sampling: ready for prime time? Wien Klin Wochenschr. 2018. 130:190–196.
53.Robson MD., Piechnik SK., Tunnicliffe EM., Neubauer S. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013. 70:664–670.
54.Friedrich MG., Sechtem U., Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009. 53:1475–1487.
Article
55.He T., Gatehouse PD., Smith GC., Mohiaddin RH., Pennell DJ., Firmin DN. Myocardial T2∗ measurements in iron-overloaded thalassemia: an in vivo study to investigate optimal methods of quantification. Magn Reson Med. 2008. 60:1082–1089.
56.Anderson LJ., Holden S., Davis B, et al. Cardiovascular T2-star (T2∗) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001. 22:2171–2179.
Article
57.Carpenter JP., He T., Kirk P, et al. On T2∗ magnetic resonance and cardiac iron. Circulation. 2011. 123:1519–1528.
Article
58.Kirk P., Roughton M., Porter JB, et al. Cardiac T2∗ magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009. 120:1961–1968.
Article