Prog Med Phys.  2020 Sep;31(3):35-53. 10.14316/pmp.2020.31.3.35.

Magnetic Resonance Imaging: Historical Overview, Technical Developments, and Clinical Applications

Affiliations
  • 1Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
  • 2Neuroscience Convergence Center, Korea University, Seoul, Korea

Abstract

The authors congratulate the cerebrations for the 30 years of the Korean Society of Medical Physics (http://www.ksmp.or.kr/). The paper is published to recognize the anniversary. Geon-Ho Jahng invited Professor Z. H. Cho to join to submit this manuscript because he has been one of the leaders in the field of magnetic resonance imaging (MRI) during the last 40 years. In this review, we describe the development and clinical histories of MRI internationally and domestically. We also discuss diffusion and perfusion MRI, molecular imaging using MRI and MR spectroscopy (MRS), and the hybrid systems, such as positron emission tomography一MRI (PET一MRI), MR-guided focused ultrasound surgery (MRgFUS), and MRI-guided linear accelerators (MRI-LINACs). In each part, we discuss the historical evolution of the develop­ments, technical develop­ments, and clinical applications.

Keyword

Magnetic resonance imaging; History; Technical development; Clinical application; Review

Figure

  • Fig. 1 Timeline of MRI developments and summary of the major contributions. MRI, magnetic resonance imaging; M, magnetic; R, resonance; I, imaging; F, functional; NMR, nuclear magnetic resonance; BOLD, blood oxygen level-dependent; NIH, National Institutes of Health; PET, positron emission tomography; MRI–LINAC, MRI-guided linear accelerators.

  • Fig. 2 Patient cases to show imaging contrasts acquired from (a) 83-year-old female, (b) 71-year-old male, and (c) 26-year-old male using a 3 T MRI system. F, female; M, male; T1W, T1-weighted; T2W, T2-weighted; FLAIR, fluid attenuated inversion recovery; GRE, gradient-echo; TOF, time of flight; CE MRA, contrast-enhanced magnetic resonance angiography; DWI b0, diffusion-weighted image with b=0 s/mm2; DWI b1000, diffusion-weighted image with b=1000 s/mm2; ADC, apparent diffusion coefficient; CE T1W, contrast-enhanced T1-weighted; APT, amide proton transfer; DSC rCBV, dynamic susceptibility contrast relative cerebral blood volume; DSC rCBF, dynamic susceptibility contrast relative cerebral blood flow; DSC MTT, dynamic susceptibility contrast mean transit time; SVS, single voxel spectroscopy; DTI b1000, diffusion tensor imaging with b=1000 s/mm2; DTI FA, diffusion tensor imaging fractional anisotropy; fMRI, functional MRI.


Reference

References

1. Jackson JA, Langham WH. 1968; Whole-body NMR spectrometer. Rev Sci Instrum. 39:510–513. DOI: 10.1063/1.1683420. PMID: 5641806.
Article
2. Damadian R. 1971; Tumor detection by nuclear magnetic resonance. Science. 171:1151–1153. DOI: 10.1126/science.171.3976.1151. PMID: 5544870.
Article
3. Lauterbur PC. 1989; Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res. (244):3–6. PMID: 2663289.
4. Lauterbur PC. 1974; Magnetic resonance zeugmatography. Pure Appl Chem. 40:149–157. DOI: 10.1351/pac197440010149.
Article
5. Mansfield P, Grannell P. 1975; "Diffraction" and microscopy in solids and liquids by NMR. Phys Rev B. 12:3618. DOI: 10.1103/PhysRevB.12.3618.
Article
6. Damadian R, Minkoff L, Goldsmith M, Stanford M, Koutcher J. 1976; Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal. Science. 194:1430–1432. DOI: 10.1126/science.1006309. PMID: 1006309.
Article
7. Cho ZH, Kim YB, Han JY, Kim NB, Hwang SI, Kim SJ, et al. 2010; Altered T2* relaxation time of the hippocampus in major depressive disorder: implications of ultra-high field magnetic resonance imaging. J Psychiatr Res. 44:881–886. DOI: 10.1016/j.jpsychires.2010.02.014. PMID: 20338580.
Article
8. Cho ZH, Lee YB, Kang CK, Yang JW, Jung IH, Park CA, et al. 2013; Microvascular imaging of asymptomatic MCA steno-occlusive patients using ultra-high-field 7T MRI. J Neurol. 260:144–150. DOI: 10.1007/s00415-012-6604-5. PMID: 22797969.
Article
9. Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, et al. 2008; A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics. 8:1302–1323. DOI: 10.1002/pmic.200700744. PMID: 18338828.
10. Kim M, Kim KE, Jeong SW, Hwang SW, Jo H, Lee J, et al. 2016; Effects of the ultra-high-frequency electrical field radiofrequency device on mouse skin: a histologic and molecular study. Plast Reconstr Surg. 138:248e–255e. DOI: 10.1097/PRS.0000000000002364. PMID: 27465186.
11. Oh SH, Chung JY, In MH, Zaitsev M, Kim YB, Speck O, et al. 2012; Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension. Magn Reson Med. 68:1239–1246. DOI: 10.1002/mrm.23317. PMID: 22213517.
Article
12. Richards K, Calamante F, Tournier JD, Kurniawan ND, Sadeghian F, Retchford AR, et al. 2014; Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage. 102 Pt 2:381–392. DOI: 10.1016/j.neuroimage.2014.07.048. PMID: 25087481.
Article
13. Hahn EL. 1950; Spin echoes. Phys Rev. 80:580. DOI: 10.1103/PhysRev.80.580.
Article
14. Hahn EL. 1950; Nuclear induction due to free larmor precession. Phys Rev. 77:297. DOI: 10.1103/PhysRev.77.297.2.
Article
15. Hajnal JV, De Coene B, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM, et al. 1992; High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr. 16:506–513. DOI: 10.1097/00004728-199207000-00002. PMID: 1629405.
Article
16. Ogawa S, Lee TM, Kay AR, Tank DW. 1990; Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 87:9868–9872. DOI: 10.1073/pnas.87.24.9868. PMID: 2124706.
Article
17. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. 1997; Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 204:272–277. DOI: 10.1148/radiology.204.1.9205259. PMID: 9205259.
Article
18. Hennig J, Nauerth A, Friedburg H. 1986; RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 3:823–833. DOI: 10.1002/mrm.1910030602. PMID: 3821461.
Article
19. Ahn CB, Kim JH, Cho ZH. 1986; High-speed spiral-scan echo planar NMR imaging-I. IEEE Trans Med Imaging. 5:2–7. DOI: 10.1109/TMI.1986.4307732. PMID: 18243976.
Article
20. Meyer CH, Hu BS, Nishimura DG, Macovski A. 1992; Fast spiral coronary artery imaging. Magn Reson Med. 28:202–213. DOI: 10.1002/mrm.1910280204. PMID: 1461123.
Article
21. Hennig J, Friedburg H. 1988; Clinical applications and methodological developments of the RARE technique. Magn Reson Imaging. 6:391–395. DOI: 10.1016/0730-725X(88)90475-4. PMID: 3185132.
Article
22. Kiefer B, Grassner J, I-lausman K. 1994; Image acquisition in a second with half fourier acquisition single shot turbo spin echo. J Magn Reson Imaging. 4(P):86.
23. Oshio K, Feinberg DA. 1991; GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med. 20:344–349. DOI: 10.1002/mrm.1910200219. PMID: 1775061.
24. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer CH. 2005; Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 53:1468–1473. DOI: 10.1002/mrm.20489. PMID: 15906302.
Article
25. Mansfield P. 1977; Multi-planar image formation using NMR spin echoes. J Phys C. 10:L55. DOI: 10.1088/0022-3719/10/3/004.
Article
26. Du J, Lu A, Block WF, Thornton FJ, Grist TM, Mistretta CA. 2005; Time-resolved undersampled projection reconstruction magnetic resonance imaging of the peripheral vessels using multi-echo acquisition. Magn Reson Med. 53:730–734. DOI: 10.1002/mrm.20404. PMID: 15723388.
Article
27. Sodickson DK, Manning WJ. 1997; Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 38:591–603. DOI: 10.1002/mrm.1910380414. PMID: 9324327.
Article
28. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999; SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 42:952–962. DOI: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S.
Article
29. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. 2002; Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 47:1202–1210. DOI: 10.1002/mrm.10171. PMID: 12111967.
Article
30. Hamilton J, Franson D, Seiberlich N. 2017; Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 101:71–95. DOI: 10.1016/j.pnmrs.2017.04.002. PMID: 28844222.
Article
31. Feinberg DA, Setsompop K. 2013; Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 229:90–100. DOI: 10.1016/j.jmr.2013.02.002. PMID: 23473893. PMCID: PMC3793016.
Article
32. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. 2001; Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging. 13:313–317. DOI: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W. PMID: 11169840.
Article
33. Feinberg DA, Reese TG, Wedeen VJ. 2002; Simultaneous echo refocusing in EPI. Magn Reson Med. 48:1–5. DOI: 10.1002/mrm.10227. PMID: 12111925.
Article
34. Panda A, Mehta BB, Coppo S, Jiang Y, Ma D, Seiberlich N, et al. 2017; Magnetic resonance fingerprinting-an overview. Curr Opin Biomed Eng. 3:56–66. DOI: 10.1016/j.cobme.2017.11.001. PMID: 29868647. PMCID: PMC5984038.
35. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, et al. 2013; Magnetic resonance fingerprinting. Nature. 495:187–192. DOI: 10.1038/nature11971. PMID: 23486058. PMCID: PMC7545258.
Article
36. Tsao J. 2010; Ultrafast imaging: principles, pitfalls, solutions, and applications. J Magn Reson Imaging. 32:252–266. DOI: 10.1002/jmri.22239. PMID: 20677249.
Article
37. Saini S, Stark DD, Rzedzian RR, Pykett IL, Rummeny E, Hahn PF, et al. 1989; Forty-millisecond MR imaging of the abdomen at 2.0 T. Radiology. 173:111–116. DOI: 10.1148/radiology.173.1.2780996. PMID: 2780996.
Article
38. Doyle M, Rzedzian R, Mansfield P, Coupland RE. 1983; Dynamic NMR cardiac imaging in a piglet. Br J Radiol. 56:925–930. DOI: 10.1259/0007-1285-56-672-925. PMID: 6652414.
Article
39. Glover GH, Lee AT. 1995; Motion artifacts in fMRI: comparison of 2DFT with PR and spiral scan methods. Magn Reson Med. 33:624–635. DOI: 10.1002/mrm.1910330507. PMID: 7596266.
Article
40. Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS. 2008; Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology. 248:782–791. DOI: 10.1148/radiol.2482071717. PMID: 18632528.
Article
41. Nayak KS, Cunningham CH, Santos JM, Pauly JM. 2004; Real-time cardiac MRI at 3 tesla. Magn Reson Med. 51:655–660. DOI: 10.1002/mrm.20053. PMID: 15065236.
Article
42. Yu AC, Badve C, Ponsky LE, Pahwa S, Dastmalchian S, Rogers M, et al. 2017; Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology. 283:729–738. DOI: 10.1148/radiol.2017161599. PMID: 28187264. PMCID: PMC5452885.
43. Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. 2016; Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 7:12445. DOI: 10.1038/ncomms12445. PMID: 27526996. PMCID: PMC4990694.
Article
44. Hamilton JI, Jiang Y, Chen Y, Ma D, Lo WC, Griswold M, et al. 2017; MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 77:1446–1458. DOI: 10.1002/mrm.26216. PMID: 27038043.
Article
45. Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. 2017; Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 78:1812–1823. DOI: 10.1002/mrm.26587. PMID: 28019021. PMCID: PMC5484761.
Article
46. Christen T, Pannetier NA, Ni WW, Qiu D, Moseley ME, Schuff N, et al. 2014; MR vascular fingerprinting: a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. Neuroimage. 89:262–270. DOI: 10.1016/j.neuroimage.2013.11.052. PMID: 24321559. PMCID: PMC3940168.
Article
47. Einstein A. 1956. Investigations on the theory of the Brownian movement. Courier Corporation;Chelmsford:
48. D Le Bihan E Breton . 1989. Mar. 7. General Electric CGR SA, assignee. Method to measure the molecular diffusion and/or perfusion parameters of live tissue. United States patent US4809701A.
49. Howe FA, Filler AG, Bell BA, Griffiths JR. 1992; Magnetic resonance neurography. Magn Reson Med. 28:328–338. DOI: 10.1002/mrm.1910280215. PMID: 1461131.
Article
50. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. 1986; MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 161:401–407. DOI: 10.1148/radiology.161.2.3763909. PMID: 3763909.
Article
51. Basser PJ, Mattiello J, LeBihan D. 1994; Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 103:247–254. DOI: 10.1006/jmrb.1994.1037. PMID: 8019776.
Article
52. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. 1996; Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med. 36:847–857. DOI: 10.1002/mrm.1910360607. PMID: 8946350.
Article
53. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. 2004; New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med. 52:965–978. DOI: 10.1002/mrm.20274. PMID: 15508168.
Article
54. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. 2003; Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 50:1077–1088. DOI: 10.1002/mrm.10609. PMID: 14587019.
Article
55. Tuch DS. 2004; Q-ball imaging. Magn Reson Med. 52:1358–1372. DOI: 10.1002/mrm.20279. PMID: 15562495. PMCID: PMC6078828.
Article
56. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. 2008; Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41:1267–1277. DOI: 10.1016/j.neuroimage.2008.03.036. PMID: 18495497.
Article
57. Tournier JD, Calamante F, Gadian DG, Connelly A. 2004; Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 23:1176–1185. DOI: 10.1016/j.neuroimage.2004.07.037. PMID: 15528117.
Article
58. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. 2012; NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 61:1000–1016. DOI: 10.1016/j.neuroimage.2012.03.072. PMID: 22484410.
Article
59. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. 2005; Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 53:1432–1440. DOI: 10.1002/mrm.20508. PMID: 15906300.
Article
60. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. 2000; In vivo fiber tractography using DT-MRI data. Magn Reson Med. 44:625–632. DOI: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O.
Article
61. Mori S, Crain BJ, Chacko VP, van Zijl PC. 1999; Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 45:265–269. DOI: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3. PMID: 9989633.
Article
62. Jones DK. 2008; Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging. 27:1268–1274. DOI: 10.1109/TMI.2008.922191. PMID: 18779066.
Article
63. Bullmore E, Sporns O. 2009; Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 10:186–198. DOI: 10.1038/nrn2575. PMID: 19190637.
Article
64. Sotak CH. 2002; The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. NMR Biomed. 15:561–569. DOI: 10.1002/nbm.786. PMID: 12489102.
Article
65. Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, et al. 2011; Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 1:423–446. DOI: 10.1089/brain.2011.0071. PMID: 22432902. PMCID: PMC3360545.
Article
66. Baliyan V, Das CJ, Sharma R, Gupta AK. 2016; Diffusion weighted imaging: technique and applications. World J Radiol. 8:785–798. DOI: 10.4329/wjr.v8.i9.785. PMID: 27721941.
Article
67. Zhang Y, Schuff N, Jahng GH, Bayne W, Mori S, Schad L, et al. 2007; Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology. 68:13–19. DOI: 10.1212/01.wnl.0000250326.77323.01. PMID: 17200485. PMCID: PMC1941719.
Article
68. Zhang Y, Du AT, Hayasaka S, Jahng GH, Hlavin J, Zhan W, et al. 2010; Patterns of age-related water diffusion changes in human brain by concordance and discordance analysis. Neurobiol Aging. 31:1991–2001. DOI: 10.1016/j.neurobiolaging.2008.10.009. PMID: 19036473. PMCID: PMC2888604.
Article
69. Jahng GH, Xu S, Weiner MW, Meyerhoff DJ, Park S, Schuff N. 2011; DTI studies in patients with Alzheimer's disease, mild cognitive impairment, or normal cognition with evaluation of the intrinsic background gradients. Neuroradiology. 53:749–762. DOI: 10.1007/s00234-011-0845-3. PMID: 21340578.
Article
70. Jahng GH, Xu S. 2012; Local susceptibility causes diffusion alterations in patients with Alzheimer's disease and mild cognitive impairment. Brain Imaging Behav. 6:426–436. DOI: 10.1007/s11682-012-9155-6. PMID: 22415193.
Article
71. Jahng GH, Xu S, Kim MJ. 2012; Mapping of distributions of a local b-matrix cross-term strength using diffusion tensor MRI in patients with Alzheimer's disease. Med Phys. 39:6324–6331. DOI: 10.1118/1.4754655. PMID: 23039668.
72. Charles-Edwards EM, deSouza NM. 2006; Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 6:135–143. DOI: 10.1102/1470-7330.2006.0021. PMID: 17015238.
Article
73. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. 2004; Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 22:275–282. PMID: 15468951.
74. Larsen EH. 2007; [August Krogh (1874-1949): 1920 nobel prize]. Ugeskr Laeger. 169:2878. Danish.
75. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. 1988; Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 6:164–174. DOI: 10.1002/mrm.1910060205. PMID: 3367774.
Article
76. Koretsky AP. 2012; Early development of arterial spin labeling to measure regional brain blood flow by MRI. Neuroimage. 62:602–607. DOI: 10.1016/j.neuroimage.2012.01.005. PMID: 22245338. PMCID: PMC4199083.
Article
77. Jahng GH, Li KL, Ostergaard L, Calamante F. 2014; Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol. 15:554–577. DOI: 10.3348/kjr.2014.15.5.554. PMID: 25246817. PMCID: PMC4170157.
Article
78. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. 1996; High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 36:715–725. DOI: 10.1002/mrm.1910360510. PMID: 8916022.
79. Tofts PS. 1997; Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 7:91–101. DOI: 10.1002/jmri.1880070113. PMID: 9039598.
Article
80. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. 1998; A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 40:383–396. DOI: 10.1002/mrm.1910400308. PMID: 9727941.
Article
81. Dai W, Garcia D, de Bazelaire C, Alsop DC. 2008; Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 60:1488–1497. DOI: 10.1002/mrm.21790. PMID: 19025913. PMCID: PMC2750002.
Article
82. Keir SL, Wardlaw JM. 2000; Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke. 31:2723–2731. DOI: 10.1161/01.STR.31.11.2723. PMID: 11062301.
Article
83. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. 2002; Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 223:11–29. DOI: 10.1148/radiol.2231010594. PMID: 11930044.
Article
84. Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, et al. 2000; Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke. 31:1097–1103. DOI: 10.1161/01.STR.31.5.1097. PMID: 10797171.
Article
85. Lee SJ, Kim JH, Kim YM, Lee GK, Lee EJ, Park IS, et al. 2001; Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol. 2:1–7. DOI: 10.3348/kjr.2001.2.1.1. PMID: 11752962. PMCID: PMC2718089.
Article
86. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. 2004; Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 52:420–429. DOI: 10.1002/mrm.20161. PMID: 15282828.
Article
87. Choi HS, Kim AH, Ahn SS, Shin NY, Kim J, Lee SK. 2013; Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI. Korean J Radiol. 14:487–492. DOI: 10.3348/kjr.2013.14.3.487. PMID: 23690718. PMCID: PMC3655305.
Article
88. Ahn SS, Shin NY, Chang JH, Kim SH, Kim EH, Kim DW, et al. 2014; Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg. 121:367–373. DOI: 10.3171/2014.5.JNS132279. PMID: 24949678.
Article
89. Suh CH, Kim HS, Choi YJ, Kim N, Kim SJ. 2013; Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol. 34:2278–2286. DOI: 10.3174/ajnr.A3634. PMID: 23828115.
Article
90. Kim SM, Kim MJ, Rhee HY, Ryu CW, Kim EJ, Petersen ET, et al. 2013; Regional cerebral perfusion in patients with Alzheimer's disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology. 55:25–34. DOI: 10.1007/s00234-012-1077-x. PMID: 22828738.
Article
91. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. 2005; Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 234:851–859. DOI: 10.1148/radiol.2343040197. PMID: 15734937. PMCID: PMC1851934.
Article
92. Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC. 2013; Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol. 54:448–454. DOI: 10.1177/0284185112474916. PMID: 23592805.
Article
93. Wang J, Licht DJ, Jahng GH, Liu CS, Rubin JT, Haselgrove J, et al. 2003; Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging. 18:404–413. DOI: 10.1002/jmri.10372. PMID: 14508776.
Article
94. Bottomley PA. 1987; Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 508:333–348. DOI: 10.1111/j.1749-6632.1987.tb32915.x. PMID: 3326459.
Article
95. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. 1989; Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med. 9:79–93. DOI: 10.1002/mrm.1910090110. PMID: 2540396.
96. Ordidge RJ, Connelly A, Lohman JA. 1986; Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson (1969). 66:283–294. DOI: 10.1016/0022-2364(86)90031-4.
Article
97. Bottomley PA, Foster TB, Darrow RD. 1984; Depth-resolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P, and 13C NMR. J Magn Reson (1969). 59:338–342. DOI: 10.1016/0022-2364(84)90179-3.
Article
98. Thrippleton MJ, Edden RA, Keeler J. 2005; Suppression of strong coupling artefacts in J-spectra. J Magn Reson. 174:97–109. DOI: 10.1016/j.jmr.2005.01.012. PMID: 15809177.
Article
99. Gruber S, Pinker K, Riederer F, Chmelík M, Stadlbauer A, Bittsanský M, et al. 2008; Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol. 68:320–327. DOI: 10.1016/j.ejrad.2007.08.038. PMID: 17964104.
Article
100. Skoch A, Jiru F, Bunke J. 2008; Spectroscopic imaging: basic principles. Eur J Radiol. 67:230–239. DOI: 10.1016/j.ejrad.2008.03.003. PMID: 18434063.
Article
101. Haase A, Frahm J, Hänicke W, Matthaei D. 1985; 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 30:341–344. DOI: 10.1088/0031-9155/30/4/008. PMID: 4001160.
Article
102. Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, et al. 2009; Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 61:548–559. DOI: 10.1002/mrm.21875. PMID: 19111009. PMCID: PMC2724718.
Article
103. Provencher SW. 1993; Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 30:672–679. DOI: 10.1002/mrm.1910300604. PMID: 8139448.
104. Provencher SW. 2001; Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14:260–264. DOI: 10.1002/nbm.698. PMID: 11410943.
105. Reynolds G, Wilson M, Peet A, Arvanitis TN. 2006; An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn Reson Med. 56:1211–1219. DOI: 10.1002/mrm.21081. PMID: 17029227.
Article
106. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. 2001; Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 31:269–286. DOI: 10.1016/S0010-4825(01)00006-3. PMID: 11334636.
Article
107. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, et al. 2001; Java-based graphical user interface for the MRUI quantitation package. MAGMA. 12:141–152. DOI: 10.1007/BF02668096. PMID: 11390270.
Article
108. van Zijl PC, Yadav NN. 2011; Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med. 65:927–948. DOI: 10.1002/mrm.22761. PMID: 21337419.
Article
109. Vinogradov E, Sherry AD, Lenkinski RE. 2013; CEST: from basic principles to applications, challenges and opportunities. J Magn Reson. 229:155–172. DOI: 10.1016/j.jmr.2012.11.024. PMID: 23273841. PMCID: PMC3602140.
Article
110. Park JE, Jahng GH, Jeong HK. 2016; Amide proton transfer imaging in clinics: basic concepts and current and future use in brain tumors and stroke. J Korean Soc Radiol. 75:419–433. DOI: 10.3348/jksr.2016.75.6.419.
Article
111. Jahng GH, Oh JH. 2017; Physical modeling of chemical exchange saturation transfer imaging. Prog Med Phys. 28:135–143. DOI: 10.14316/pmp.2017.28.4.135.
Article
112. Oh JH, Kim HG, Woo DC, Jeong HK, Lee SY, Jahng GH. 2017; Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: phantom experiments. J Korean Phys Soc. 70:545–553. DOI: 10.3938/jkps.70.545.
Article
113. Jahng GH, Choi W, Chung JJ, Kim ST, Rhee HY. 2018; Mapping exchangeable protons to monitor protein alterations in the brain of an Alzheimer's disease mouse model by using MRI. Curr Alzheimer Res. 15:1343–1353. DOI: 10.2174/1567205015666180911143518. PMID: 30207233.
Article
114. Yoo CH, Oh J, Park S, Ryu CW, Kwon YK, Jahng GH. 2019; Comparative evaluation of the polynomial and spline fitting methods for the B0 correction of CEST MRI data acquired from human brains. Int J Imaging Syst Technol. 29:272–282. DOI: 10.1002/ima.22313.
Article
115. Oh JH, Kim HG, Woo DC, Rhee SJ, Lee SY, Jahng GH. 2018; Preliminary phantom experiments to map amino acids and neurotransmitters using MRI. Prog Med Phys. 29:29–41. DOI: 10.14316/pmp.2018.29.1.29.
Article
116. Park S, Jang J, Oh JH, Ryu CW, Jahng GH. 2019; Assessment of the cerebrospinal fluid effect on the chemical exchange saturation transfer map obtained from the full Z-spectrum in the elderly human brain. Prog Med Phys. 30:139–149. DOI: 10.14316/pmp.2019.30.4.139.
Article
117. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. 1989; Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med. 9:126–131. DOI: 10.1002/mrm.1910090115. PMID: 2540394.
Article
118. Arnold DL, Matthews PM, Francis G, Antel J. 1990; Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med. 14:154–159. DOI: 10.1002/mrm.1910140115. PMID: 2161982.
119. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. 1993; Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology. 187:433–437. DOI: 10.1148/radiology.187.2.8475286. PMID: 8475286.
Article
120. Jahng GH, Oh J, Lee DW, Kim HG, Rhee HY, Shin W, et al. 2016; Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 52:145–159. DOI: 10.3233/JAD-150877. PMID: 27060946.
Article
121. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R, et al. 1989; Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 172:541–548. DOI: 10.1148/radiology.172.2.2748837. PMID: 2748837.
Article
122. Sciarra A, Panebianco V, Ciccariello M, Salciccia S, Cattarino S, Lisi D, et al. 2010; Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res. 16:1875–1883. DOI: 10.1158/1078-0432.CCR-09-2195. PMID: 20197480.
Article
123. Haddadin IS, McIntosh A, Meisamy S, Corum C, Styczynski Snyder AL, Powell NJ, et al. 2009; Metabolite quantification and high-field MRS in breast cancer. NMR Biomed. 22:65–76. DOI: 10.1002/nbm.1217. PMID: 17957820. PMCID: PMC2628417.
Article
124. Zhao X, Wen Z, Zhang G, Huang F, Lu S, Wang X, et al. 2013; Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol. 15:114–122. DOI: 10.1007/s11307-012-0563-1. PMID: 22644987. PMCID: PMC3518606.
Article
125. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, et al. 2011; Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 17:130–134. DOI: 10.1038/nm.2268. PMID: 21170048. PMCID: PMC3058561.
Article
126. Wang M, Hong X, Chang CF, Li Q, Ma B, Zhang H, et al. 2015; Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI. Magn Reson Med. 74:42–50. DOI: 10.1002/mrm.25690. PMID: 25879165. PMCID: PMC4608848.
Article
127. Dula AN, Arlinghaus LR, Dortch RD, Dewey BE, Whisenant JG, Ayers GD, et al. 2013; Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med. 70:216–224. DOI: 10.1002/mrm.24450. PMID: 22907893.
Article
128. Jia G, Abaza R, Williams JD, Zynger DL, Zhou J, Shah ZK, et al. 2011; Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging. 33:647–654. DOI: 10.1002/jmri.22480. PMID: 21563248. PMCID: PMC4287206.
Article
129. Ling W, Regatte RR, Navon G, Jerschow A. 2008; Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 105:2266–2270. DOI: 10.1073/pnas.0707666105. PMID: 18268341. PMCID: PMC2268124.
Article
130. Yamamoto S, Kuroda K, Senda M. 2003; Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci. 50:1683–1685. DOI: 10.1109/TNS.2003.817375.
Article
131. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. 2006; Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 47:639–647. PMID: 16595498.
132. Kinahan PE, Townsend DW, Beyer T, Sashin D. 1998; Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 25:2046–2053. DOI: 10.1118/1.598392. PMID: 9800714.
Article
133. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. 2013; MRI for attenuation correction in PET: methods and challenges. MAGMA. 26:99–113. DOI: 10.1007/s10334-012-0353-4. PMID: 23179594.
Article
134. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. 2011; Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 38:138–152. DOI: 10.1007/s00259-010-1603-1. PMID: 20922522.
Article
135. Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, et al. 2016; Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. MAGMA. 29:75–87. DOI: 10.1007/s10334-015-0505-4. PMID: 26739263.
Article
136. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. 2009; Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 50:520–526. DOI: 10.2967/jnumed.108.054726. PMID: 19289430.
Article
137. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. 1999; Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 18:393–403. DOI: 10.1109/42.774167. PMID: 10416801.
Article
138. Johansson A, Karlsson M, Nyholm T. 2011; CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 38:2708–2714. DOI: 10.1118/1.3578928. PMID: 21776807.
Article
139. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T. 2012; Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal. 16:252–264. DOI: 10.1016/j.media.2011.08.003. PMID: 21959365.
Article
140. Uribe S, Muthurangu V, Boubertakh R, Schaeffter T, Razavi R, Hill DL, et al. 2007; Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med. 57:606–613. DOI: 10.1002/mrm.21156. PMID: 17326164.
Article
141. Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. 2016; MR Imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 11:161–177. DOI: 10.1016/j.cpet.2015.09.002. PMID: 26952729.
Article
142. Bai B, Li Q, Leahy RM. 2013; Magnetic resonance-guided positron emission tomography image reconstruction. Semin Nucl Med. 43:30–44. DOI: 10.1053/j.semnuclmed.2012.08.006. PMID: 23178087. PMCID: PMC3670801.
Article
143. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. 1993; "Anatometabolic" tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. 34:1190–1197. PMID: 8315501.
144. Kirchner J, Sawicki LM, Deuschl C, Grüneisen J, Beiderwellen K, Lauenstein TC, et al. 2017; 18 F-FDG PET/MR imaging in patients with suspected liver lesions: value of liver-specific contrast agent Gadobenate dimeglumine. PLoS One. 12:e0180349. DOI: 10.1371/journal.pone.0180349. PMID: 28683109. PMCID: PMC5500282.
Article
145. Baumann T, Rottenburger C, Nicolas G, Wild D. 2016; Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - Imaging and staging. Best Pract Res Clin Endocrinol Metab. 30:45–57. DOI: 10.1016/j.beem.2016.01.003. PMID: 26971843.
Article
146. Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Wu CH, et al. 2016; PET/MRI in pancreatic and periampullary cancer: correlating diffusion-weighted imaging, MR spectroscopy and glucose metabolic activity with clinical stage and prognosis. Eur J Nucl Med Mol Imaging. 43:1753–1764. DOI: 10.1007/s00259-016-3356-y. PMID: 26993317.
Article
147. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. 2016; Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 70:829–836. DOI: 10.1016/j.eururo.2015.12.053. PMID: 26795686.
Article
148. Miller-Thomas MM, Benzinger TL. 2017; Neurologic applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 25:297–313. DOI: 10.1016/j.mric.2016.12.003. PMID: 28390530. PMCID: PMC5485669.
Article
149. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. 2011; Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7:257–262. DOI: 10.1016/j.jalz.2011.03.004. PMID: 21514247.
Article
150. Lee KK, Salamon N. 2009; [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol. 30:1811–1816. DOI: 10.3174/ajnr.A1637. PMID: 19628624. PMCID: PMC7051291.
Article
151. Kransdorf MJ, Bridges MD. 2013; Current developments and recent advances in musculoskeletal tumor imaging. Semin Musculoskelet Radiol. 17:145–155. DOI: 10.1055/s-0033-1343070. PMID: 23673546.
Article
152. Abgral R, Dweck MR, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. 2017; Clinical utility of combined FDG-PET/MR to assess myocardial disease. JACC Cardiovasc Imaging. 10:594–597. DOI: 10.1016/j.jcmg.2016.02.029. PMID: 27372018. PMCID: PMC5199624.
Article
153. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. 2008; High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol. 190:191–199. DOI: 10.2214/AJR.07.2671. PMID: 18094311.
Article
154. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA. 1992; MR-guided focused ultrasound surgery. J Comput Assist Tomogr. 16:956–965. DOI: 10.1097/00004728-199211000-00024. PMID: 1430448. PMCID: PMC6857263.
Article
155. Hynynen K, Darkazanli A, Unger E, Schenck JF. 1993; MRI-guided noninvasive ultrasound surgery. Med Phys. 20:107–115. DOI: 10.1118/1.597093. PMID: 8455489.
Article
156. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, et al. 1995; A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 34:814–823. DOI: 10.1002/mrm.1910340606. PMID: 8598808.
Article
157. Rieke V, Butts Pauly K. 2008; MR thermometry. J Magn Reson Imaging. 27:376–390. DOI: 10.1002/jmri.21265. PMID: 18219673.
Article
158. Lénárd ZM, McDannold NJ, Fennessy FM, Stewart EA, Jolesz FA, Hynynen K, et al. 2008; Uterine leiomyomas: MR imaging-guided focused ultrasound surgery--imaging predictors of success. Radiology. 249:187–194. DOI: 10.1148/radiol.2491071600. PMID: 18695211. PMCID: PMC2657858.
Article
159. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. 2008; Palliative treatment of painful bone metastases with MR imaging--guided focused ultrasound. Radiology. 249:355–363. DOI: 10.1148/radiol.2491071523. PMID: 18695209.
Article
160. Benedict SH, De Meerleer G, Orton CG, Stancanello J. 2011; Point/counterpoint. High intensity focused ultrasound may be superior to radiation therapy for the treatment of early stage prostate cancer. Med Phys. 38:3909–3912. DOI: 10.1118/1.3561500. PMID: 21858986.
161. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, et al. 2001; MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 219:176–185. DOI: 10.1148/radiology.219.1.r01ap02176. PMID: 11274554.
Article
162. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. 2017; Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release. 250:77–85. DOI: 10.1016/j.jconrel.2016.10.011. PMID: 27742444. PMCID: PMC5384106.
Article
163. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. 2013; MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 12:462–468. DOI: 10.1016/S1474-4422(13)70048-6. PMID: 23523144.
Article
164. Magara A, Bühler R, Moser D, Kowalski M, Pourtehrani P, Jeanmonod D. 2014; First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound. 2:11. DOI: 10.1186/2050-5736-2-11. PMID: 25512869.
Article
165. Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, et al. 2015; Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry. 20:1205–1211. DOI: 10.1038/mp.2014.154. PMID: 25421403.
Article
166. Kim M, Kim CH, Jung HH, Kim SJ, Chang JW. 2018; Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery. Biol Psychiatry. 83:e17–e18. DOI: 10.1016/j.biopsych.2017.05.008. PMID: 28601192.
Article
167. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, et al. 2012; Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 32:E1. DOI: 10.3171/2011.10.FOCUS11248. PMID: 22208894.
Article
168. Saenz DL, Yan Y, Christensen N, Henzler MA, Forrest LJ, Bayouth JE, et al. 2015; Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification. J Appl Clin Med Phys. 16:30–40. DOI: 10.1120/jacmp.v16i6.5353. PMID: 26699552. PMCID: PMC5691014.
169. Yun J, St Aubin J, Rathee S, Fallone BG. 2010; Brushed permanent magnet DC MLC motor operation in an external magnetic field. Med Phys. 37:2131–2134. DOI: 10.1118/1.3392165. PMID: 20527546.
Article
170. St Aubin J, Steciw S, Fallone BG. 2010; Effect of transverse magnetic fields on a simulated in-line 6 MV linac. Phys Med Biol. 55:4861–4869. DOI: 10.1088/0031-9155/55/16/015. PMID: 20679699.
Article
171. St Aubin J, Santos DM, Steciw S, Fallone BG. 2010; Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac. Med Phys. 37:4916–4923. DOI: 10.1118/1.3481513. PMID: 20964210.
172. Bielajew AF. 1993; The effect of strong longitudinal magnetic fields on dose deposition from electron and photon beams. Med Phys. 20:1171–1179. DOI: 10.1118/1.597149. PMID: 8413027.
Article
173. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. 2005; Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 50:1363–1376. DOI: 10.1088/0031-9155/50/7/002. PMID: 15798329.
Article
174. Liney GP, Whelan B, Oborn B, Barton M, Keall P. 2018; MRI-linear accelerator radiotherapy systems. Clin Oncol (R Coll Radiol). 30:686–691. DOI: 10.1016/j.clon.2018.08.003. PMID: 30195605.
Article
175. Emmerich J, Laun FB, Pfaffenberger A, Schilling R, Denoix M, Maier F, et al. 2018; Technical note: on the size of susceptibility-induced MR image distortions in prostate and cervix in the context of MR-guided radiation therapy. Med Phys. 45:1586–1593. DOI: 10.1002/mp.12785. PMID: 29394448.
Article
176. Liney GP, Dong B, Begg J, Vial P, Zhang K, Lee F, et al. 2016; Technical note: experimental results from a prototype high-field inline MRI-linac. Med Phys. 43:5188. DOI: 10.1118/1.4961395. PMID: 27587049.
Article
177. Burke B, Wachowicz K, Fallone BG, Rathee S. 2012; Effect of radiation induced current on the quality of MR images in an integrated linac-MR system. Med Phys. 39:6139–6147. DOI: 10.1118/1.4752422. PMID: 23039653.
Article
178. Palacios MA, Bohoudi O, Bruynzeel AME, van Sörsen de Koste JR, Cobussen P, Slotman BJ, et al. 2018; Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys. 102:426–433. DOI: 10.1016/j.ijrobp.2018.06.002. PMID: 29902559.
Article
179. Kontaxis C, Bol GH, Lagendijk JJ, Raaymakers BW. 2015; A new methodology for inter- and intrafraction plan adaptation for the MR-linac. Phys Med Biol. 60:7485–7497. DOI: 10.1088/0031-9155/60/19/7485. PMID: 26371425.
Article
180. Rudra S, Jiang N, Rosenberg SA, Olsen JR, Roach MC, Wan L, et al. 2019; Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 8:2123–2132. DOI: 10.1002/cam4.2100. PMID: 30932367. PMCID: PMC6536981.
Article
181. Murray J, Tree AC. 2019; Prostate cancer- advantages and disadvantages of MR-guided RT. Clin Transl Radiat Oncol. 18:68–73. DOI: 10.1016/j.ctro.2019.03.006. PMID: 31341979.
182. Werensteijn-Honingh AM, Kroon PS, Winkel D, Aalbers EM, van Asselen B, Bol GH, et al. 2019; Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 134:50–54. DOI: 10.1016/j.radonc.2019.01.024. PMID: 31005224.
Article
183. Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, et al. 2019; Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 18:54–59. DOI: 10.1016/j.ctro.2019.04.001. PMID: 31341976. PMCID: PMC6630157.
Article
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr