3. Lauterbur PC. 1989; Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res. (244):3–6. PMID:
2663289.
6. Damadian R, Minkoff L, Goldsmith M, Stanford M, Koutcher J. 1976; Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal. Science. 194:1430–1432. DOI:
10.1126/science.1006309. PMID:
1006309.
Article
7. Cho ZH, Kim YB, Han JY, Kim NB, Hwang SI, Kim SJ, et al. 2010; Altered T2* relaxation time of the hippocampus in major depressive disorder: implications of ultra-high field magnetic resonance imaging. J Psychiatr Res. 44:881–886. DOI:
10.1016/j.jpsychires.2010.02.014. PMID:
20338580.
Article
8. Cho ZH, Lee YB, Kang CK, Yang JW, Jung IH, Park CA, et al. 2013; Microvascular imaging of asymptomatic MCA steno-occlusive patients using ultra-high-field 7T MRI. J Neurol. 260:144–150. DOI:
10.1007/s00415-012-6604-5. PMID:
22797969.
Article
9. Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, et al. 2008; A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics. 8:1302–1323. DOI:
10.1002/pmic.200700744. PMID:
18338828.
10. Kim M, Kim KE, Jeong SW, Hwang SW, Jo H, Lee J, et al. 2016; Effects of the ultra-high-frequency electrical field radiofrequency device on mouse skin: a histologic and molecular study. Plast Reconstr Surg. 138:248e–255e. DOI:
10.1097/PRS.0000000000002364. PMID:
27465186.
11. Oh SH, Chung JY, In MH, Zaitsev M, Kim YB, Speck O, et al. 2012; Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension. Magn Reson Med. 68:1239–1246. DOI:
10.1002/mrm.23317. PMID:
22213517.
Article
12. Richards K, Calamante F, Tournier JD, Kurniawan ND, Sadeghian F, Retchford AR, et al. 2014; Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage. 102 Pt 2:381–392. DOI:
10.1016/j.neuroimage.2014.07.048. PMID:
25087481.
Article
15. Hajnal JV, De Coene B, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM, et al. 1992; High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr. 16:506–513. DOI:
10.1097/00004728-199207000-00002. PMID:
1629405.
Article
16. Ogawa S, Lee TM, Kay AR, Tank DW. 1990; Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 87:9868–9872. DOI:
10.1073/pnas.87.24.9868. PMID:
2124706.
Article
17. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. 1997; Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 204:272–277. DOI:
10.1148/radiology.204.1.9205259. PMID:
9205259.
Article
22. Kiefer B, Grassner J, I-lausman K. 1994; Image acquisition in a second with half fourier acquisition single shot turbo spin echo. J Magn Reson Imaging. 4(P):86.
23. Oshio K, Feinberg DA. 1991; GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med. 20:344–349. DOI:
10.1002/mrm.1910200219. PMID:
1775061.
24. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer CH. 2005; Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 53:1468–1473. DOI:
10.1002/mrm.20489. PMID:
15906302.
Article
26. Du J, Lu A, Block WF, Thornton FJ, Grist TM, Mistretta CA. 2005; Time-resolved undersampled projection reconstruction magnetic resonance imaging of the peripheral vessels using multi-echo acquisition. Magn Reson Med. 53:730–734. DOI:
10.1002/mrm.20404. PMID:
15723388.
Article
27. Sodickson DK, Manning WJ. 1997; Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 38:591–603. DOI:
10.1002/mrm.1910380414. PMID:
9324327.
Article
29. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. 2002; Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 47:1202–1210. DOI:
10.1002/mrm.10171. PMID:
12111967.
Article
36. Tsao J. 2010; Ultrafast imaging: principles, pitfalls, solutions, and applications. J Magn Reson Imaging. 32:252–266. DOI:
10.1002/jmri.22239. PMID:
20677249.
Article
39. Glover GH, Lee AT. 1995; Motion artifacts in fMRI: comparison of 2DFT with PR and spiral scan methods. Magn Reson Med. 33:624–635. DOI:
10.1002/mrm.1910330507. PMID:
7596266.
Article
40. Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS. 2008; Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology. 248:782–791. DOI:
10.1148/radiol.2482071717. PMID:
18632528.
Article
41. Nayak KS, Cunningham CH, Santos JM, Pauly JM. 2004; Real-time cardiac MRI at 3 tesla. Magn Reson Med. 51:655–660. DOI:
10.1002/mrm.20053. PMID:
15065236.
Article
42. Yu AC, Badve C, Ponsky LE, Pahwa S, Dastmalchian S, Rogers M, et al. 2017; Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology. 283:729–738. DOI:
10.1148/radiol.2017161599. PMID:
28187264. PMCID:
PMC5452885.
43. Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. 2016; Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 7:12445. DOI:
10.1038/ncomms12445. PMID:
27526996. PMCID:
PMC4990694.
Article
44. Hamilton JI, Jiang Y, Chen Y, Ma D, Lo WC, Griswold M, et al. 2017; MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 77:1446–1458. DOI:
10.1002/mrm.26216. PMID:
27038043.
Article
45. Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. 2017; Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 78:1812–1823. DOI:
10.1002/mrm.26587. PMID:
28019021. PMCID:
PMC5484761.
Article
46. Christen T, Pannetier NA, Ni WW, Qiu D, Moseley ME, Schuff N, et al. 2014; MR vascular fingerprinting: a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. Neuroimage. 89:262–270. DOI:
10.1016/j.neuroimage.2013.11.052. PMID:
24321559. PMCID:
PMC3940168.
Article
47. Einstein A. 1956. Investigations on the theory of the Brownian movement. Courier Corporation;Chelmsford:
48.
D Le Bihan
E Breton
. 1989. Mar. 7. General Electric CGR SA, assignee. Method to measure the molecular diffusion and/or perfusion parameters of live tissue. United States patent US4809701A.
50. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. 1986; MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 161:401–407. DOI:
10.1148/radiology.161.2.3763909. PMID:
3763909.
Article
51. Basser PJ, Mattiello J, LeBihan D. 1994; Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 103:247–254. DOI:
10.1006/jmrb.1994.1037. PMID:
8019776.
Article
52. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. 1996; Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med. 36:847–857. DOI:
10.1002/mrm.1910360607. PMID:
8946350.
Article
53. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. 2004; New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med. 52:965–978. DOI:
10.1002/mrm.20274. PMID:
15508168.
Article
54. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. 2003; Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 50:1077–1088. DOI:
10.1002/mrm.10609. PMID:
14587019.
Article
56. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. 2008; Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41:1267–1277. DOI:
10.1016/j.neuroimage.2008.03.036. PMID:
18495497.
Article
57. Tournier JD, Calamante F, Gadian DG, Connelly A. 2004; Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 23:1176–1185. DOI:
10.1016/j.neuroimage.2004.07.037. PMID:
15528117.
Article
58. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. 2012; NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 61:1000–1016. DOI:
10.1016/j.neuroimage.2012.03.072. PMID:
22484410.
Article
59. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. 2005; Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 53:1432–1440. DOI:
10.1002/mrm.20508. PMID:
15906300.
Article
62. Jones DK. 2008; Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging. 27:1268–1274. DOI:
10.1109/TMI.2008.922191. PMID:
18779066.
Article
63. Bullmore E, Sporns O. 2009; Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 10:186–198. DOI:
10.1038/nrn2575. PMID:
19190637.
Article
64. Sotak CH. 2002; The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. NMR Biomed. 15:561–569. DOI:
10.1002/nbm.786. PMID:
12489102.
Article
65. Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, et al. 2011; Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 1:423–446. DOI:
10.1089/brain.2011.0071. PMID:
22432902. PMCID:
PMC3360545.
Article
66. Baliyan V, Das CJ, Sharma R, Gupta AK. 2016; Diffusion weighted imaging: technique and applications. World J Radiol. 8:785–798. DOI:
10.4329/wjr.v8.i9.785. PMID:
27721941.
Article
69. Jahng GH, Xu S, Weiner MW, Meyerhoff DJ, Park S, Schuff N. 2011; DTI studies in patients with Alzheimer's disease, mild cognitive impairment, or normal cognition with evaluation of the intrinsic background gradients. Neuroradiology. 53:749–762. DOI:
10.1007/s00234-011-0845-3. PMID:
21340578.
Article
70. Jahng GH, Xu S. 2012; Local susceptibility causes diffusion alterations in patients with Alzheimer's disease and mild cognitive impairment. Brain Imaging Behav. 6:426–436. DOI:
10.1007/s11682-012-9155-6. PMID:
22415193.
Article
71. Jahng GH, Xu S, Kim MJ. 2012; Mapping of distributions of a local b-matrix cross-term strength using diffusion tensor MRI in patients with Alzheimer's disease. Med Phys. 39:6324–6331. DOI:
10.1118/1.4754655. PMID:
23039668.
73. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. 2004; Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 22:275–282. PMID:
15468951.
74. Larsen EH. 2007; [August Krogh (1874-1949): 1920 nobel prize]. Ugeskr Laeger. 169:2878. Danish.
75. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. 1988; Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 6:164–174. DOI:
10.1002/mrm.1910060205. PMID:
3367774.
Article
78. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. 1996; High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 36:715–725. DOI:
10.1002/mrm.1910360510. PMID:
8916022.
80. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. 1998; A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 40:383–396. DOI:
10.1002/mrm.1910400308. PMID:
9727941.
Article
81. Dai W, Garcia D, de Bazelaire C, Alsop DC. 2008; Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 60:1488–1497. DOI:
10.1002/mrm.21790. PMID:
19025913. PMCID:
PMC2750002.
Article
83. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. 2002; Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 223:11–29. DOI:
10.1148/radiol.2231010594. PMID:
11930044.
Article
84. Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, et al. 2000; Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke. 31:1097–1103. DOI:
10.1161/01.STR.31.5.1097. PMID:
10797171.
Article
86. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. 2004; Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 52:420–429. DOI:
10.1002/mrm.20161. PMID:
15282828.
Article
87. Choi HS, Kim AH, Ahn SS, Shin NY, Kim J, Lee SK. 2013; Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI. Korean J Radiol. 14:487–492. DOI:
10.3348/kjr.2013.14.3.487. PMID:
23690718. PMCID:
PMC3655305.
Article
88. Ahn SS, Shin NY, Chang JH, Kim SH, Kim EH, Kim DW, et al. 2014; Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg. 121:367–373. DOI:
10.3171/2014.5.JNS132279. PMID:
24949678.
Article
89. Suh CH, Kim HS, Choi YJ, Kim N, Kim SJ. 2013; Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol. 34:2278–2286. DOI:
10.3174/ajnr.A3634. PMID:
23828115.
Article
90. Kim SM, Kim MJ, Rhee HY, Ryu CW, Kim EJ, Petersen ET, et al. 2013; Regional cerebral perfusion in patients with Alzheimer's disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology. 55:25–34. DOI:
10.1007/s00234-012-1077-x. PMID:
22828738.
Article
91. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. 2005; Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 234:851–859. DOI:
10.1148/radiol.2343040197. PMID:
15734937. PMCID:
PMC1851934.
Article
92. Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC. 2013; Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol. 54:448–454. DOI:
10.1177/0284185112474916. PMID:
23592805.
Article
93. Wang J, Licht DJ, Jahng GH, Liu CS, Rubin JT, Haselgrove J, et al. 2003; Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging. 18:404–413. DOI:
10.1002/jmri.10372. PMID:
14508776.
Article
95. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. 1989; Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med. 9:79–93. DOI:
10.1002/mrm.1910090110. PMID:
2540396.
96. Ordidge RJ, Connelly A, Lohman JA. 1986; Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson (1969). 66:283–294. DOI:
10.1016/0022-2364(86)90031-4.
Article
97. Bottomley PA, Foster TB, Darrow RD. 1984; Depth-resolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P, and 13C NMR. J Magn Reson (1969). 59:338–342. DOI:
10.1016/0022-2364(84)90179-3.
Article
99. Gruber S, Pinker K, Riederer F, Chmelík M, Stadlbauer A, Bittsanský M, et al. 2008; Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol. 68:320–327. DOI:
10.1016/j.ejrad.2007.08.038. PMID:
17964104.
Article
102. Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, et al. 2009; Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 61:548–559. DOI:
10.1002/mrm.21875. PMID:
19111009. PMCID:
PMC2724718.
Article
103. Provencher SW. 1993; Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 30:672–679. DOI:
10.1002/mrm.1910300604. PMID:
8139448.
104. Provencher SW. 2001; Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14:260–264. DOI:
10.1002/nbm.698. PMID:
11410943.
105. Reynolds G, Wilson M, Peet A, Arvanitis TN. 2006; An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn Reson Med. 56:1211–1219. DOI:
10.1002/mrm.21081. PMID:
17029227.
Article
106. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. 2001; Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 31:269–286. DOI:
10.1016/S0010-4825(01)00006-3. PMID:
11334636.
Article
107. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, et al. 2001; Java-based graphical user interface for the MRUI quantitation package. MAGMA. 12:141–152. DOI:
10.1007/BF02668096. PMID:
11390270.
Article
108. van Zijl PC, Yadav NN. 2011; Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med. 65:927–948. DOI:
10.1002/mrm.22761. PMID:
21337419.
Article
110. Park JE, Jahng GH, Jeong HK. 2016; Amide proton transfer imaging in clinics: basic concepts and current and future use in brain tumors and stroke. J Korean Soc Radiol. 75:419–433. DOI:
10.3348/jksr.2016.75.6.419.
Article
112. Oh JH, Kim HG, Woo DC, Jeong HK, Lee SY, Jahng GH. 2017; Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: phantom experiments. J Korean Phys Soc. 70:545–553. DOI:
10.3938/jkps.70.545.
Article
113. Jahng GH, Choi W, Chung JJ, Kim ST, Rhee HY. 2018; Mapping exchangeable protons to monitor protein alterations in the brain of an Alzheimer's disease mouse model by using MRI. Curr Alzheimer Res. 15:1343–1353. DOI:
10.2174/1567205015666180911143518. PMID:
30207233.
Article
114. Yoo CH, Oh J, Park S, Ryu CW, Kwon YK, Jahng GH. 2019; Comparative evaluation of the polynomial and spline fitting methods for the B0 correction of CEST MRI data acquired from human brains. Int J Imaging Syst Technol. 29:272–282. DOI:
10.1002/ima.22313.
Article
115. Oh JH, Kim HG, Woo DC, Rhee SJ, Lee SY, Jahng GH. 2018; Preliminary phantom experiments to map amino acids and neurotransmitters using MRI. Prog Med Phys. 29:29–41. DOI:
10.14316/pmp.2018.29.1.29.
Article
116. Park S, Jang J, Oh JH, Ryu CW, Jahng GH. 2019; Assessment of the cerebrospinal fluid effect on the chemical exchange saturation transfer map obtained from the full Z-spectrum in the elderly human brain. Prog Med Phys. 30:139–149. DOI:
10.14316/pmp.2019.30.4.139.
Article
117. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. 1989; Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med. 9:126–131. DOI:
10.1002/mrm.1910090115. PMID:
2540394.
Article
118. Arnold DL, Matthews PM, Francis G, Antel J. 1990; Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med. 14:154–159. DOI:
10.1002/mrm.1910140115. PMID:
2161982.
119. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. 1993; Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology. 187:433–437. DOI:
10.1148/radiology.187.2.8475286. PMID:
8475286.
Article
120. Jahng GH, Oh J, Lee DW, Kim HG, Rhee HY, Shin W, et al. 2016; Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 52:145–159. DOI:
10.3233/JAD-150877. PMID:
27060946.
Article
121. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R, et al. 1989; Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 172:541–548. DOI:
10.1148/radiology.172.2.2748837. PMID:
2748837.
Article
122. Sciarra A, Panebianco V, Ciccariello M, Salciccia S, Cattarino S, Lisi D, et al. 2010; Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res. 16:1875–1883. DOI:
10.1158/1078-0432.CCR-09-2195. PMID:
20197480.
Article
123. Haddadin IS, McIntosh A, Meisamy S, Corum C, Styczynski Snyder AL, Powell NJ, et al. 2009; Metabolite quantification and high-field MRS in breast cancer. NMR Biomed. 22:65–76. DOI:
10.1002/nbm.1217. PMID:
17957820. PMCID:
PMC2628417.
Article
124. Zhao X, Wen Z, Zhang G, Huang F, Lu S, Wang X, et al. 2013; Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol. 15:114–122. DOI:
10.1007/s11307-012-0563-1. PMID:
22644987. PMCID:
PMC3518606.
Article
125. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, et al. 2011; Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 17:130–134. DOI:
10.1038/nm.2268. PMID:
21170048. PMCID:
PMC3058561.
Article
126. Wang M, Hong X, Chang CF, Li Q, Ma B, Zhang H, et al. 2015; Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI. Magn Reson Med. 74:42–50. DOI:
10.1002/mrm.25690. PMID:
25879165. PMCID:
PMC4608848.
Article
127. Dula AN, Arlinghaus LR, Dortch RD, Dewey BE, Whisenant JG, Ayers GD, et al. 2013; Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med. 70:216–224. DOI:
10.1002/mrm.24450. PMID:
22907893.
Article
128. Jia G, Abaza R, Williams JD, Zynger DL, Zhou J, Shah ZK, et al. 2011; Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging. 33:647–654. DOI:
10.1002/jmri.22480. PMID:
21563248. PMCID:
PMC4287206.
Article
129. Ling W, Regatte RR, Navon G, Jerschow A. 2008; Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 105:2266–2270. DOI:
10.1073/pnas.0707666105. PMID:
18268341. PMCID:
PMC2268124.
Article
130. Yamamoto S, Kuroda K, Senda M. 2003; Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci. 50:1683–1685. DOI:
10.1109/TNS.2003.817375.
Article
131. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. 2006; Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 47:639–647. PMID:
16595498.
132. Kinahan PE, Townsend DW, Beyer T, Sashin D. 1998; Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 25:2046–2053. DOI:
10.1118/1.598392. PMID:
9800714.
Article
134. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. 2011; Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 38:138–152. DOI:
10.1007/s00259-010-1603-1. PMID:
20922522.
Article
135. Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, et al. 2016; Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. MAGMA. 29:75–87. DOI:
10.1007/s10334-015-0505-4. PMID:
26739263.
Article
136. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. 2009; Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 50:520–526. DOI:
10.2967/jnumed.108.054726. PMID:
19289430.
Article
137. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. 1999; Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 18:393–403. DOI:
10.1109/42.774167. PMID:
10416801.
Article
138. Johansson A, Karlsson M, Nyholm T. 2011; CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 38:2708–2714. DOI:
10.1118/1.3578928. PMID:
21776807.
Article
139. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T. 2012; Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal. 16:252–264. DOI:
10.1016/j.media.2011.08.003. PMID:
21959365.
Article
140. Uribe S, Muthurangu V, Boubertakh R, Schaeffter T, Razavi R, Hill DL, et al. 2007; Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med. 57:606–613. DOI:
10.1002/mrm.21156. PMID:
17326164.
Article
141. Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. 2016; MR Imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 11:161–177. DOI:
10.1016/j.cpet.2015.09.002. PMID:
26952729.
Article
143. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. 1993; "Anatometabolic" tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. 34:1190–1197. PMID:
8315501.
144. Kirchner J, Sawicki LM, Deuschl C, Grüneisen J, Beiderwellen K, Lauenstein TC, et al. 2017; 18 F-FDG PET/MR imaging in patients with suspected liver lesions: value of liver-specific contrast agent Gadobenate dimeglumine. PLoS One. 12:e0180349. DOI:
10.1371/journal.pone.0180349. PMID:
28683109. PMCID:
PMC5500282.
Article
145. Baumann T, Rottenburger C, Nicolas G, Wild D. 2016; Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - Imaging and staging. Best Pract Res Clin Endocrinol Metab. 30:45–57. DOI:
10.1016/j.beem.2016.01.003. PMID:
26971843.
Article
146. Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Wu CH, et al. 2016; PET/MRI in pancreatic and periampullary cancer: correlating diffusion-weighted imaging, MR spectroscopy and glucose metabolic activity with clinical stage and prognosis. Eur J Nucl Med Mol Imaging. 43:1753–1764. DOI:
10.1007/s00259-016-3356-y. PMID:
26993317.
Article
147. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. 2016; Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 70:829–836. DOI:
10.1016/j.eururo.2015.12.053. PMID:
26795686.
Article
149. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. 2011; Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7:257–262. DOI:
10.1016/j.jalz.2011.03.004. PMID:
21514247.
Article
150. Lee KK, Salamon N. 2009; [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol. 30:1811–1816. DOI:
10.3174/ajnr.A1637. PMID:
19628624. PMCID:
PMC7051291.
Article
151. Kransdorf MJ, Bridges MD. 2013; Current developments and recent advances in musculoskeletal tumor imaging. Semin Musculoskelet Radiol. 17:145–155. DOI:
10.1055/s-0033-1343070. PMID:
23673546.
Article
152. Abgral R, Dweck MR, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. 2017; Clinical utility of combined FDG-PET/MR to assess myocardial disease. JACC Cardiovasc Imaging. 10:594–597. DOI:
10.1016/j.jcmg.2016.02.029. PMID:
27372018. PMCID:
PMC5199624.
Article
153. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. 2008; High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol. 190:191–199. DOI:
10.2214/AJR.07.2671. PMID:
18094311.
Article
155. Hynynen K, Darkazanli A, Unger E, Schenck JF. 1993; MRI-guided noninvasive ultrasound surgery. Med Phys. 20:107–115. DOI:
10.1118/1.597093. PMID:
8455489.
Article
156. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, et al. 1995; A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 34:814–823. DOI:
10.1002/mrm.1910340606. PMID:
8598808.
Article
158. Lénárd ZM, McDannold NJ, Fennessy FM, Stewart EA, Jolesz FA, Hynynen K, et al. 2008; Uterine leiomyomas: MR imaging-guided focused ultrasound surgery--imaging predictors of success. Radiology. 249:187–194. DOI:
10.1148/radiol.2491071600. PMID:
18695211. PMCID:
PMC2657858.
Article
159. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. 2008; Palliative treatment of painful bone metastases with MR imaging--guided focused ultrasound. Radiology. 249:355–363. DOI:
10.1148/radiol.2491071523. PMID:
18695209.
Article
160. Benedict SH, De Meerleer G, Orton CG, Stancanello J. 2011; Point/counterpoint. High intensity focused ultrasound may be superior to radiation therapy for the treatment of early stage prostate cancer. Med Phys. 38:3909–3912. DOI:
10.1118/1.3561500. PMID:
21858986.
161. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, et al. 2001; MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 219:176–185. DOI:
10.1148/radiology.219.1.r01ap02176. PMID:
11274554.
Article
162. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. 2017; Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release. 250:77–85. DOI:
10.1016/j.jconrel.2016.10.011. PMID:
27742444. PMCID:
PMC5384106.
Article
163. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. 2013; MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 12:462–468. DOI:
10.1016/S1474-4422(13)70048-6. PMID:
23523144.
Article
164. Magara A, Bühler R, Moser D, Kowalski M, Pourtehrani P, Jeanmonod D. 2014; First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound. 2:11. DOI:
10.1186/2050-5736-2-11. PMID:
25512869.
Article
165. Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, et al. 2015; Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry. 20:1205–1211. DOI:
10.1038/mp.2014.154. PMID:
25421403.
Article
166. Kim M, Kim CH, Jung HH, Kim SJ, Chang JW. 2018; Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery. Biol Psychiatry. 83:e17–e18. DOI:
10.1016/j.biopsych.2017.05.008. PMID:
28601192.
Article
167. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, et al. 2012; Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 32:E1. DOI:
10.3171/2011.10.FOCUS11248. PMID:
22208894.
Article
168. Saenz DL, Yan Y, Christensen N, Henzler MA, Forrest LJ, Bayouth JE, et al. 2015; Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification. J Appl Clin Med Phys. 16:30–40. DOI:
10.1120/jacmp.v16i6.5353. PMID:
26699552. PMCID:
PMC5691014.
169. Yun J, St Aubin J, Rathee S, Fallone BG. 2010; Brushed permanent magnet DC MLC motor operation in an external magnetic field. Med Phys. 37:2131–2134. DOI:
10.1118/1.3392165. PMID:
20527546.
Article
171. St Aubin J, Santos DM, Steciw S, Fallone BG. 2010; Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac. Med Phys. 37:4916–4923. DOI:
10.1118/1.3481513. PMID:
20964210.
172. Bielajew AF. 1993; The effect of strong longitudinal magnetic fields on dose deposition from electron and photon beams. Med Phys. 20:1171–1179. DOI:
10.1118/1.597149. PMID:
8413027.
Article
173. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. 2005; Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 50:1363–1376. DOI:
10.1088/0031-9155/50/7/002. PMID:
15798329.
Article
175. Emmerich J, Laun FB, Pfaffenberger A, Schilling R, Denoix M, Maier F, et al. 2018; Technical note: on the size of susceptibility-induced MR image distortions in prostate and cervix in the context of MR-guided radiation therapy. Med Phys. 45:1586–1593. DOI:
10.1002/mp.12785. PMID:
29394448.
Article
176. Liney GP, Dong B, Begg J, Vial P, Zhang K, Lee F, et al. 2016; Technical note: experimental results from a prototype high-field inline MRI-linac. Med Phys. 43:5188. DOI:
10.1118/1.4961395. PMID:
27587049.
Article
177. Burke B, Wachowicz K, Fallone BG, Rathee S. 2012; Effect of radiation induced current on the quality of MR images in an integrated linac-MR system. Med Phys. 39:6139–6147. DOI:
10.1118/1.4752422. PMID:
23039653.
Article
178. Palacios MA, Bohoudi O, Bruynzeel AME, van Sörsen de Koste JR, Cobussen P, Slotman BJ, et al. 2018; Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys. 102:426–433. DOI:
10.1016/j.ijrobp.2018.06.002. PMID:
29902559.
Article
179. Kontaxis C, Bol GH, Lagendijk JJ, Raaymakers BW. 2015; A new methodology for inter- and intrafraction plan adaptation for the MR-linac. Phys Med Biol. 60:7485–7497. DOI:
10.1088/0031-9155/60/19/7485. PMID:
26371425.
Article
180. Rudra S, Jiang N, Rosenberg SA, Olsen JR, Roach MC, Wan L, et al. 2019; Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 8:2123–2132. DOI:
10.1002/cam4.2100. PMID:
30932367. PMCID:
PMC6536981.
Article
181. Murray J, Tree AC. 2019; Prostate cancer- advantages and disadvantages of MR-guided RT. Clin Transl Radiat Oncol. 18:68–73. DOI:
10.1016/j.ctro.2019.03.006. PMID:
31341979.
182. Werensteijn-Honingh AM, Kroon PS, Winkel D, Aalbers EM, van Asselen B, Bol GH, et al. 2019; Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 134:50–54. DOI:
10.1016/j.radonc.2019.01.024. PMID:
31005224.
Article
183. Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, et al. 2019; Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 18:54–59. DOI:
10.1016/j.ctro.2019.04.001. PMID:
31341976. PMCID:
PMC6630157.
Article