J Rheum Dis.  2020 Oct;27(4):261-269. 10.4078/jrd.2020.27.4.261.

Lipid Profiles in Anti-neutrophil Cytoplasmic Antibody-associated Vasculitis: A Cross-sectional Analysis

Affiliations
  • 1Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Seoul, Korea
  • 2Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Korea
  • 3Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
  • 4Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea

Abstract


Objective
. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune disease (AID) characterised by necrotising intravascular inflammation. Growing evidence suggests that immune system triggers altered lipid metabolism in AIDs. We investigated whether changes in lipid profile correlate with severity of disease in AAV. Methods. Seven lipid profiles were evaluated utilizing frozen serum samples from 67 patients registered in the Severance Hospital ANCA-associated VasculitidEs cohort by a chemistry autoanalyzer. The Birmingham Vasculitis Activity Score (BVAS) version 3 was used to measure patient’s assessment of global disease activity. The relationship between the BVAS with continuous variables was calculated by Pearson’s correlation analysis. Results. Thirty-five (52.2%), 19 (28.4%), and 13 (19.4%) patients were diagnosed with microscopic polyangiitis, granulomatosis with polyangiitis, and eosinophilic granulomatosis with polyangiitis, respectively. Patients’ mean age was 60.0 years, and 22 (32.8%) were male. Among the lipid profiles investigated, total cholesterol, high-density lipoprotein, and low-density lipoprotein, and apolipoprotein A1 and B were significantly associated with BVAS; apolipoprotein A1 showed the highest correlation with BVAS (r=−0.521, p<0.001), remaining consistent even in patients with new-onset disease (r=−0.430, p=0.012). Apolipoprotein A1 had the highest association with the renal manifestation score among the clinical scores comprising BVAS (r=−0.457, p<0.001). Conclusion. Decreased lipid levels, especially apolipoprotein A1, are relevant to increased AAV disease activity, and differ according to organ involvement. Measuring lipid profiles could have clinical implications regarding the assessment of global disease activity and organ involvement patterns.

Keyword

Anti-neutrophil cytoplasmic antibody-associated vasculitis; Lipids; Apolipoprotein A1; Biomarkers

Figure

  • Figure 1 Association between laboratory data and BVAS in AAV. The correlation between BVAS and laboratory data were assessed in total patients (n=67). BVAS: Birmingham Vasculitis Activity Score, AAV: anti-neutrophil cytoplasmic antibody-associated vasculitis, HDL: high-density lipoprotein, LDL: low-density lipoprotein, ESR: erythrocyte sedimentation rate, CRP: C-reactive protein.

  • Figure 2 Association between laboratory data and BVAS in new-onset AAV. The correlation between BVAS and laboratory data were assessed in patients with new-onset disease (n=33). BVAS: Birmingham Vasculitis Activity Score, AAV: anti-neutrophil cytoplasmic antibody-associated vasculitis, HDL: high-density lipoprotein, LDL: low-density lipoprotein, ESR: erythrocyte sedimentation rate, CRP: C-reactive protein.


Cited by  2 articles

What Can Lipids in Anti-neutrophil Cytoplasmic Antibody-associated Vasculitis Tell Us?
Chan-Bum Choi
J Rheum Dis. 2021;28(1):1-3.    doi: 10.4078/jrd.2021.28.1.1.

Acute coronary syndrome in antineutrophil cytoplasmic antibody-associated vasculitis: a Korean single-centre cohort study
Jin Seok Kim, Yong-Beom Park, Sang-Won Lee
J Rheum Dis. 2023;30(2):106-115.    doi: 10.4078/jrd.2023.0002.


Reference

1. McGovern D, Williams SP, Parsons K, Farrah TE, Gallacher PJ, Miller-Hodges E, et al. 2020; Long-term outcomes in elderly patients with ANCA-associated vasculitis. Rheumatology (Oxford). 59:1076–83. DOI: 10.1093/rheumatology/kez388. PMID: 31794032.
Article
2. Jennette JC, Nachman PH. 2017; ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol. 12:1680–91. DOI: 10.2215/CJN.02500317. PMID: 28842398.
Article
3. Lee SW, Park YB. 2019; Classification of antineutrophil cytoplasmic antibody-associated vasculitis. J Rheum Dis. 26:156–64. DOI: 10.4078/jrd.2019.26.3.156. PMCID: PMC5628710. PMCID: PMC5628710.
Article
4. Xiao H, Hu P, Falk RJ, Jennette JC. 2016; Overview of the pathogenesis of ANCA-associated vasculitis. Kidney Dis (Basel). 1:205–15. DOI: 10.1159/000442323. PMID: 27536680. PMCID: PMC4934824.
Article
5. Kominsky DJ, Campbell EL, Colgan SP. 2010; Metabolic shifts in immunity and inflammation. J Immunol. 184:4062–8. DOI: 10.4049/jimmunol.0903002. PMID: 20368286. PMCID: PMC4077461.
Article
6. Ryu H, Kim J, Kim D, Lee JE, Chung Y. 2019; Cellular and molecular links between autoimmunity and lipid metabolism. Mol Cells. 42:747–54. DOI: 10.14348/molcells.2019.0196. PMID: 31766832. PMCID: PMC6883973.
7. Venetsanopoulou AI, Pelechas E, Voulgari PV, Drosos AA. 2020; The lipid paradox in rheumatoid arthritis: the dark horse of the augmented cardiovascular risk. Rheumatol Int. 40:1181–91. DOI: 10.1007/s00296-020-04616-2. PMID: 32524301.
Article
8. Sarkissian T, Beyenne J, Feldman B, Adeli K, Silverman E. 2006; The complex nature of the interaction between disease activity and therapy on the lipid profile in patients with pediatric systemic lupus erythematosus. Arthritis Rheum. 54:1283–90. DOI: 10.1002/art.21748. PMID: 16575849.
Article
9. Watts R, Lane S, Hanslik T, Hauser T, Hellmich B, Koldingsnes W, et al. 2007; Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis. 66:222–7. DOI: 10.1136/ard.2006.054593. PMID: 16901958. PMCID: PMC1798520.
Article
10. Jennette JC. 2013; Overview of the 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Clin Exp Nephrol. 17:603–6. DOI: 10.1007/s10157-013-0869-6. PMID: 24072416. PMCID: PMC4029362.
Article
11. Mukhtyar C, Lee R, Brown D, Carruthers D, Dasgupta B, Dubey S, et al. 2009; Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann Rheum Dis. 68:1827–32. DOI: 10.1136/ard.2008.101279. PMID: 19054820.
Article
12. Lee J, Son H, Ryu OH. 2017; Management status of cardiovascular disease risk factors for dyslipidemia among Korean adults. Yonsei Med J. 58:326–38. DOI: 10.3349/ymj.2017.58.2.326. PMID: 28120563. PMCID: PMC5290012.
Article
13. Ahn SS, Kim JO, Yoon T, Song JJ, Park YB, Lee SW, et al. 2019; Serum aminoacyl-tRNA synthetase-interacting multifunctional protein-1 can predict severe antineutrophil cytoplasmic antibody-associated vasculitis: a pilot monocentric study. Biomed Res Int. 2019:7508240. DOI: 10.1155/2019/7508240. PMID: 31236412. PMCID: PMC6545776.
Article
14. Wallace ZS, Fu X, Liao K, Kallenberg CGM, Langford CA, Merkel PA, et al. 2019; Disease activity, antineutrophil cytoplasmic antibody type, and lipid levels in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 71:1879–87. DOI: 10.1002/art.41006. PMID: 31162829. PMCID: PMC6944270.
Article
15. Toth PP. 2005; Cardiology patient page. The "good cholesterol": high-density lipoprotein. Circulation. 111:e89–91. DOI: 10.1161/01.CIR.0000154555.07002.CA. PMID: 15699268.
16. Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, et al. 2018; Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 9:526. DOI: 10.3389/fphys.2018.00526. PMID: 29867567. PMCID: PMC5962737.
Article
17. Kaji H. 2013; High-density lipoproteins and the immune system. J Lipids. 2013:684903. DOI: 10.1155/2013/684903. PMID: 23431458. PMCID: PMC3572698.
Article
18. Wang SH, Yuan SG, Peng DQ, Zhao SP. 2012; HDL and ApoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis. 225:105–14. DOI: 10.1016/j.atherosclerosis.2012.07.029. PMID: 22862966.
Article
19. Wang Y, Lu S, Zhang G, Wu S, Yan Y, Dong Q, et al. 2018; Anti-inflammatory effects of HDL in mice with rheumatoid arthritis induced by collagen. Front Immunol. 9:1013. DOI: 10.3389/fimmu.2018.01013. PMID: 29867985. PMCID: PMC5958197.
Article
20. Georgila K, Vyrla D, Drakos E. 2019; Apolipoprotein A-I (ApoA-I), immunity, inflammation and cancer. Cancers (Basel). 11:1097. DOI: 10.3390/cancers11081097. PMID: 31374929. PMCID: PMC6721368.
Article
21. Oliviero F, Sfriso P, Baldo G, Dayer JM, Giunco S, Scanu A, et al. 2009; Apolipoprotein A-I and cholesterol in synovial fluid of patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Clin Exp Rheumatol. 27:79–83. PMID: 19327233.
22. Millet A, Pederzoli-Ribeil M, Guillevin L, Witko-Sarsat V, Mouthon L. 2013; Antineutrophil cytoplasmic antibody-associated vasculitides: is it time to split up the group? Ann Rheum Dis. 72:1273–9. DOI: 10.1136/annrheumdis-2013-203255. PMID: 23606701.
Article
23. Cornec D, Cornec-Le Gall E, Fervenza FC, Specks U. 2016; ANCA-associated vasculitis - clinical utility of using ANCA specificity to classify patients. Nat Rev Rheumatol. 12:570–9. DOI: 10.1038/nrrheum.2016.123. PMID: 27464484.
Article
24. Geetha D, Jefferson JA. 2020; ANCA-associated vasculitis: core curriculum 2020. Am J Kidney Dis. 75:124–37. DOI: 10.1053/j.ajkd.2019.04.031. PMID: 31358311.
Article
25. Hilhorst M, van Paassen P, Tervaert JW. Limburg Renal Registry. 2015; Proteinase 3-ANCA vasculitis versus myeloperoxidase-ANCA vasculitis. J Am Soc Nephrol. 26:2314–27. DOI: 10.1681/ASN.2014090903. PMID: 25956510. PMCID: PMC4587702.
Article
26. Pagnoux C, Hogan SL, Chin H, Jennette JC, Falk RJ, Guillevin L, et al. 2008; Predictors of treatment resistance and relapse in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis: comparison of two independent cohorts. Arthritis Rheum. 58:2908–18. DOI: 10.1002/art.23800. PMID: 18759282. PMCID: PMC2754705.
Article
27. Yoo J, Kim HJ, Ahn SS, Jung SM, Song JJ, Park YB, et al. 2017; Clinical and prognostic features of Korean patients with MPO-ANCA, PR3-ANCA and ANCA-negative vasculitis. Clin Exp Rheumatol. 35 Suppl 103:111–8. PMID: 28339364.
28. Peckett AJ, Wright DC, Riddell MC. 2011; The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 60:1500–10. DOI: 10.1016/j.metabol.2011.06.012. PMID: 21864867.
Article
29. Subramanian S, Trence DL. 2007; Immunosuppressive agents: effects on glucose and lipid metabolism. Endocrinol Metab Clin North Am. 36:891–905. DOI: 10.1016/j.ecl.2007.07.003. PMID: 17983927.
Full Text Links
  • JRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr