Korean J Physiol Pharmacol.  2020 Jul;24(4):319-328. 10.4196/kjpp.2020.24.4.319.

Activation of the renin-angiotensin system in high fructose-induced metabolic syndrome

Affiliations
  • 1Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
  • 2Department of Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
  • 3Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea

Abstract

High fructose intake induces hyperglycemia and hypertension. However, the mechanism by which fructose induces metabolic syndrome is largely unknown. We hypothesized that high fructose intake induces activation of the renin-angiotensin system (RAS), resulting in hypertension and metabolic syndrome. We provided 11-week-old Sprague–Dawley rats with drinking water, with or without 20% fructose, for two weeks. We measured serum renin, angiotensin II (Ang II), and aldosterone (Aldo) using ELISA kits. The expression of RAS genes was determined by quantitative reverse transcription polymerase chain reaction. High fructose intake increased body weight and water retention, regardless of food intake or urine volume. After two weeks, fructose intake induced glucose intolerance and hypertension. High fructose intake increased serum renin, Ang II, triglyceride, and cholesterol levels, but not Aldo levels. High fructose intake increased the expression of angiotensinogen in the liver; angiotensin-converting enzyme in the lungs; and renin, angiotensin II type 1a receptor (AT1aR), and angiotensin II type 1b receptor (AT1bR) in the kidneys. However, expression of AT1aR and AT1bR in the adrenal glands did not increase in rats given fructose. Taken together, these results indicate that high fructose intake induces activation of RAS, resulting in hypertension and metabolic syndrome.

Keyword

Fructose; Hypertension; Metabolic syndrome; Obesity; Renin-angiotensin system

Figure

  • Fig. 1 Effects of high fructose intake on body weight and biological parameters. Male Sprague–Dawley rats drank either water (control, n = 6) or water containing 20% fructose (fructose, n = 6) for two weeks. (A) Body weight was monitored for two weeks. High fructose intake promoted weight gain. Food intake, water intake, and urine volume were measured using metabolic cages. (B) High fructose intake did not affect food intake. (C) High fructose intake increased water intake. (D) Urine volume decreased in the fructose group. (E) Water retention increased in the fructose group. Data are presented as mean ± standard error of six rats (*p = 0.05, control vs. fructose).

  • Fig. 2 Effects of high fructose intake on systolic blood pressure (BP) and glucose tolerance. (A) Systolic blood pressure was measured using a tail-cuff method in control rats (n = 6) and rats drinking 20% fructose (n = 6) for a period of two weeks. High fructose intake induced hypertension. (B) Glucose tolerance tests (GTTs) were performed on rats at the end of the first week. (C) The corresponding area under the curve (AUC) values were obtained. (D) A second GTT was performed on rats at the end of the second week. (E) Corresponding AUC values were obtained. High fructose intake caused glucose intolerance. Data are presented as mean ± standard error of six rats (*p = 0.05, **p = 0.01, control vs. fructose).

  • Fig. 3 High fructose intake activated the renin-angiotensin system. Serum renin, angiotensin II (Ang II), and aldosterone (Aldo; expressed as pg per ml of serum) were measured in rats drinking 20% fructose for two weeks. High fructose intake increased (A) renin and (B) Ang II levels. (C) High fructose intake did not affect Aldo levels. (D) Blood chemistry. Data are presented as mean ± standard error of six rats (*p = 0.05, **p = 0.01, control vs. fructose). ALT, alanine transaminase; AST, aspartate transaminase; HDLC, high density lipoprotein cholesterol; LDLC, low density lipoprotein cholesterol.

  • Fig. 4 Effects of high fructose intake on the expression of renin-angiotensin system (RAS) genes in the lungs and liver. RAS-related gene expression was quantified by RT-qPCR. High fructose intake increased the expression of angiotensinogen (Agt) in the liver (A) and angiotensin-converting enzyme (Ace) in the lungs (B). The graphs show the mean ± standard error of three independent experiments (*p = 0.05, **p = 0.01, control vs. fructose).

  • Fig. 5 Effects of high fructose intake on the expression of renin-angiotensin system (RAS) genes in the kidney. Representative images of kidneys and adrenal glands are shown from rats drinking either water (control, n = 6) or 20% fructose (fructose, n = 6). (A) Representative gross images of kidneys and adrenal glands are shown for control and fructose-intake rats. RAS-related gene expression of was quantified by RT-qPCR. Intake of 20% fructose increased the expression of renin, angiotensin II type 1a receptor (AT1aR), angiotensin II type 1b receptor (AT1bR), and angiotensin II type 2 receptor (AT2) in the kidneys (B–E). (F) Kidneys sections were stained with H&E or trichrome. Renin, AT1R, and angiotensin II (Ang II) proteins were detected by immunohistochemistry. JGA, juxtaglomerular apparatus. The graphs show the mean ± standard error of three independent experiments (*p = 0.05, **p = 0.01, control vs. fructose).

  • Fig. 6 Effects of high fructose intake on the expression of renin-angiotensin system (RAS) genes in the adrenal glands. (A, B) RAS-related gene expression was quantified by RT-qPCR. However, high fructose intake did not affect the expression of angiotensin II type 1a receptor (AT1aR) or angiotensin II type 1b receptor (AT1bR) in the adrenal glands. Representative images show adrenals from rats drinking either water (control, n = 6) or water containing 20% fructose (fructose, n = 6). (C) Adrenal gland sections were stained with H&E. AT1R and angiotensin II (Ang II) proteins were detected by immunohistochemistry. The graphs show the mean ± standard error of three independent experiments (*p = 0.05, **p = 0.01, control vs. fructose).

  • Fig. 7 Schematic diagram. Eleven-week-old male Sprague–Dawley rats were fed either a chow diet (control, n = 6) or a chow diet supplemented with 20% fructose (fructose, n = 6) in drinking water for two weeks. High fructose intake induced metabolic syndrome and activated renin-angiotensin system (RAS). Ang, angiotensin; ACE, angiotensin-converting enzyme.


Cited by  1 articles

Ovariectomy, but not orchiectomy, exacerbates metabolic syndrome after maternal high-fructose intake in adult offspring
Mina Kim, Inkyeom Kim
Korean J Physiol Pharmacol. 2021;25(1):39-49.    doi: 10.4196/kjpp.2021.25.1.39.


Reference

1. Bray GA. 2008; Fructose: should we worry? Int J Obes (Lond). 32(Suppl 7):S127–S131. DOI: 10.1038/ijo.2008.248. PMID: 19136981.
Article
2. Tappy L, Lê KA. 2010; Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 90:23–46. DOI: 10.1152/physrev.00019.2009. PMID: 20086073.
Article
3. Ferder L, Ferder MD, Inserra F. 2010; The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep. 12:105–112. DOI: 10.1007/s11906-010-0097-3. PMID: 20424937.
Article
4. Bizeau ME, Pagliassotti MJ. 2005; Hepatic adaptations to sucrose and fructose. Metabolism. 54:1189–1201. DOI: 10.1016/j.metabol.2005.04.004. PMID: 16125531.
Article
5. Lê KA, Tappy L. 2006; Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care. 9:469–475. DOI: 10.1097/01.mco.0000232910.61612.4d. PMID: 16778579.
6. Tappy L, Lê KA, Tran C, Paquot N. 2010; Fructose and metabolic diseases: new findings, new questions. Nutrition. 26:1044–1049. DOI: 10.1016/j.nut.2010.02.014. PMID: 20471804.
Article
7. Wolf G, Butzmann U, Wenzel UO. 2003; The renin-angiotensin system and progression of renal disease: from hemodynamics to cell biology. Nephron Physiol. 93:P3–P13. DOI: 10.1159/000066656. PMID: 12411725.
Article
8. Ichihara A, Kobori H, Nishiyama A, Navar LG. 2004; Renal renin-angiotensin system. Contrib Nephrol. 143:117–130. DOI: 10.1159/000078716. PMID: 15248360. PMCID: PMC2575669.
Article
9. Timmermans PB, Benfield P, Chiu AT, Herblin WF, Wong PC, Smith RD. 1992; Angiotensin II receptors and functional correlates. Am J Hypertens. 5(12 Pt 2):221S–235S. DOI: 10.1093/ajh/5.12.221S. PMID: 1290617.
Article
10. Wang DH, Du Y, Yao A, Hu Z. 1996; Regulation of type 1 angiotensin II receptor and its subtype gene expression in kidney by sodium loading and angiotensin II infusion. J Hypertens. 14:1409–1415. DOI: 10.1097/00004872-199612000-00004. PMID: 8986922.
Article
11. Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, Ohishi M, Satoh N, Tuck ML, Ogihara T. 2002; The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens. 15(1 Pt 1):66–71. DOI: 10.1016/S0895-7061(01)02232-4. PMID: 11824863.
Article
12. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM. 1995; Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A. 92:3521–3525. DOI: 10.1073/pnas.92.8.3521. PMID: 7724593. PMCID: PMC42199.
Article
13. Sugaya T, Nishimatsu S, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, Uchida H, Sugiura M, Fukuta K, Fukamizu A, Murakami K. 1995; Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem. 270:18719–18722. DOI: 10.1074/jbc.270.32.18719. PMID: 7642517.
Article
14. Chen X, Li W, Yoshida H, Tsuchida S, Nishimura H, Takemoto F, Okubo S, Fogo A, Matsusaka T, Ichikawa I. 1997; Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol. 272(3 Pt 2):F299–F304. DOI: 10.1152/ajprenal.1997.272.3.F299. PMID: 9087671.
Article
15. Hauger RL, Aguilera G, Catt KJ. 1978; Angiotensin II regulates its receptor sites in the adrenal glomerulosa zone. Nature. 271:176–178. DOI: 10.1038/271176a0. PMID: 202874.
Article
16. Yee AH, Burns JD, Wijdicks EF. 2010; Cerebral salt wasting: pathophysiology, diagnosis, and treatment. Neurosurg Clin N Am. 21:339–352. DOI: 10.1016/j.nec.2009.10.011. PMID: 20380974.
Article
17. Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. 2015; Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 116:960–975. DOI: 10.1161/CIRCRESAHA.116.303587. PMID: 25767283.
18. Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD. 1992; Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun. 183:1090–1096. DOI: 10.1016/S0006-291X(05)80302-X. PMID: 1567388.
Article
19. Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y, Kim IK. 2013; Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ Res. 112:1004–1012. DOI: 10.1161/CIRCRESAHA.113.301071. PMID: 23421989.
Article
20. Dupas J, Feray A, Goanvec C, Guernec A, Samson N, Bougaran P, Guerrero F, Mansourati J. 2017; Metabolic syndrome and hypertension resulting from fructose enriched diet in Wistar rats. Biomed Res Int. 2017:2494067. DOI: 10.1155/2017/2494067. PMID: 28497040. PMCID: PMC5405603.
Article
21. Gambaro SE, Zubiría MG, Portales AE, Rey MA, Rumbo M, Giovambattista A. 2018; M1 macrophage subtypes activation and adipocyte dysfunction worsen during prolonged consumption of a fructose-rich diet. J Nutr Biochem. 61:173–182. DOI: 10.1016/j.jnutbio.2018.08.004. PMID: 30245336.
Article
22. Gligorovska L, Bursać B, Kovačević S, Veličković N, Matić G, Djordjevic A. 2019; Mif deficiency promotes adiposity in fructose-fed mice. J Endocrinol. 240:133–145. DOI: 10.1530/JOE-18-0333. PMID: 30400058.
Article
23. Seong HY, Cho HM, Kim M, Kim I. 2019; Maternal high-fructose intake induces multigenerational activation of the renin-angiotensin-aldosterone system. Hypertension. 74:518–525. DOI: 10.1161/HYPERTENSIONAHA.119.12941. PMID: 31327271.
Article
24. Reaven GM, Chang H. 1991; Relationship between blood pressure, plasma insulin and triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats. Am J Hypertens. 4(1 Pt 1):34–38. DOI: 10.1093/ajh/4.1.34. PMID: 2006995.
25. Takagi Y, Kashiwagi A, Tanaka Y, Asahina T, Kikkawa R, Shigeta Y. 1995; Significance of fructose-induced protein oxidation and formation of advanced glycation end product. J Diabetes Complications. 9:87–91. DOI: 10.1016/1056-8727(94)00022-G. PMID: 7599353.
Article
26. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, Sánchez-Lozada LG. 2007; Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 86:899–906.
27. Noelting J, DiBaise JK. 2015; Mechanisms of fructose absorption. Clin Transl Gastroenterol. 6:e120. DOI: 10.1038/ctg.2015.50. PMCID: PMC4817407.
Article
28. Wang X, Jia X, Chang T, Desai K, Wu L. 2008; Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens. 26:765–772. DOI: 10.1097/HJH.0b013e3282f4a13c. PMID: 18327087.
Article
29. Hwang IS, Ho H, Hoffman BB, Reaven GM. 1987; Fructose-induced insulin resistance and hypertension in rats. Hypertension. 10:512–516. DOI: 10.1161/01.HYP.10.5.512. PMID: 3311990.
Article
30. Kolderup A, Svihus B. 2015; Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J Nutr Metab. 2015:823081. DOI: 10.1155/2015/823081. PMID: 26199742. PMCID: PMC4496653.
Article
31. Connell JM, Davies E. 2005; The new biology of aldosterone. J Endocrinol. 186:1–20. DOI: 10.1677/joe.1.06017. PMID: 16002531.
Article
32. Sherajee SJ, Rafiq K, Nakano D, Mori H, Kobara H, Hitomi H, Fujisawa Y, Kobori H, Masaki T, Nishiyama A. 2013; Aldosterone aggravates glucose intolerance induced by high fructose. Eur J Pharmacol. 720:63–68. DOI: 10.1016/j.ejphar.2013.10.051. PMID: 24201309. PMCID: PMC3879420.
Article
33. Marcus Y, Shefer G, Sasson K, Kohen F, Limor R, Pappo O, Nevo N, Biton I, Bach M, Berkutzki T, Fridkin M, Benayahu D, Shechter Y, Stern N. 2013; Angiotensin 1-7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model. Diabetes. 62:1121–1130. DOI: 10.2337/db12-0792. PMID: 23250359. PMCID: PMC3609575.
Article
34. Bundalo MM, Zivkovic MD, Romic SD, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD. 2016; Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst. 17:1470320316642915. DOI: 10.1177/1470320316642915. PMID: 27121972. PMCID: PMC5843877.
Article
35. Wharton J, Morgan K, Rutherford RA, Catravas JD, Chester A, Whitehead BF, De Leval MR, Yacoub MH, Polak JM. 1998; Differential distribution of angiotensin AT2 receptors in the normal and failing human heart. J Pharmacol Exp Ther. 284:323–336.
36. Utsunomiya H, Nakamura M, Kakudo K, Inagami T, Tamura M. 2005; Angiotensin II AT2 receptor localization in cardiovascular tissues by its antibody developed in AT2 gene-deleted mice. Regul Pept. 126:155–161. DOI: 10.1016/j.regpep.2004.09.004. PMID: 15664662.
Article
37. Xu J, Sun Y, Carretero OA, Zhu L, Harding P, Shesely EG, Dai X, Rhaleb NE, Peterson E, Yang XP. 2014; Effects of cardiac overexpression of the angiotensin II type 2 receptor on remodeling and dysfunction in mice post-myocardial infarction. Hypertension. 63:1251–1259. DOI: 10.1161/HYPERTENSIONAHA.114.03247. PMID: 24732892. PMCID: PMC4031246.
Article
38. Masaki H, Kurihara T, Yamaki A, Inomata N, Nozawa Y, Mori Y, Murasawa S, Kizima K, Maruyama K, Horiuchi M, Dzau VJ, Takahashi H, Iwasaka T, Inada M, Matsubara H. 1998; Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest. 101:527–535. DOI: 10.1172/JCI1885. PMID: 9449684. PMCID: PMC508594.
Article
39. Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, Franco M. 2007; Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 292:F423–F429. DOI: 10.1152/ajprenal.00124.2006. PMID: 16940562.
Article
40. Cirillo P, Gersch MS, Mu W, Scherer PM, Kim KM, Gesualdo L, Henderson GN, Johnson RJ, Sautin YY. 2009; Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. J Am Soc Nephrol. 20:545–553. DOI: 10.1681/ASN.2008060576. PMID: 19158351. PMCID: PMC2653686.
Article
41. Xu C, Lu A, Lu X, Zhang L, Fang H, Zhou L, Yang T. 2017; Activation of renal (pro)renin receptor contributes to high fructose-induced salt sensitivity. Hypertension. 69:339–348. DOI: 10.1161/HYPERTENSIONAHA.116.08240. PMID: 27993957. PMCID: PMC5556690.
Article
42. Ares GR, Kassem KM, Ortiz PA. 2019; Fructose acutely stimulates NKCC2 activity in rat thick ascending limbs by increasing surface NKCC2 expression. Am J Physiol Renal Physiol. 316:F550–F557. DOI: 10.1152/ajprenal.00136.2018. PMID: 30516424. PMCID: PMC6459307.
Article
43. Cabral PD, Hong NJ, Hye Khan MA, Ortiz PA, Beierwaltes WH, Imig JD, Garvin JL. 2014; Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. Hypertension. 63:e68–e73. DOI: 10.1161/HYPERTENSIONAHA.113.02564. PMID: 24379189.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr