2. Sternberg JR, Prendergast AE, Brosse L, Cantaut-Belarif Y, Thouvenin O, Orts-Del'Immagine A, Castillo L, Djenoune L, Kurisu S, McDearmid JR, Bardet PL, Boccara C, Okamoto H, Delmas P, Wyart C. 2018; Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun. 9:3804. DOI:
10.1038/s41467-018-06225-x. PMID:
30228263. PMCID:
PMC6143598.
Article
3. DeCaen PG, Delling M, Vien TN, Clapham DE. 2013; Direct recording and molecular identification of the calcium channel of primary cilia. Nature. 504:315–318. DOI:
10.1038/nature12832. PMID:
24336289. PMCID:
PMC4073646.
Article
4. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. 2006; Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A. 103:12569–12574. DOI:
10.1073/pnas.0602702103. PMID:
16891422. PMCID:
PMC1531643.
Article
5. Zheng W, Hussein S, Yang J, Huang J, Zhang F, Hernandez-Anzaldo S, Fernandez-Patron C, Cao Y, Zeng H, Tang J, Chen XZ. 2015; A novel PKD2L1 C-terminal domain critical for trimerization and channel function. Sci Rep. 5:9460. DOI:
10.1038/srep09460. PMID:
25820328. PMCID:
PMC4377555.
Article
7. Park EYJ, Kwak M, Ha K, So I. 2018; Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflugers Arch. 470:505–516. DOI:
10.1007/s00424-017-2095-7. PMID:
29230552.
Article
8. Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, Shen A, Zhou Q, Yan C, Lei J, Zhang Y, Liu X, Wang T. 2018; Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat Commun. 9:1192. DOI:
10.1038/s41467-018-03606-0. PMID:
29567962. PMCID:
PMC5864754.
Article
10. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. 1992; Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 228:1177–1192. DOI:
10.1016/0022-2836(92)90324-D. PMID:
1474585.
11. Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. 2019; The crossroad of ion channels and calmodulin in disease. Int J Mol Sci. 20:E400. DOI:
10.3390/ijms20020400. PMID:
30669290. PMCID:
PMC6359610.
Article
12. Martin SR, Andersson Teleman A, Bayley PM, Drakenberg T, Forsen S. 1985; Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. Eur J Biochem. 151:543–550. DOI:
10.1111/j.1432-1033.1985.tb09137.x. PMID:
4029146.
Article
13. Liu XR, Zhang MM, Rempel DL, Gross ML. 2019; A single approach reveals the composite conformational changes, order of binding, and affinities for calcium binding to calmodulin. Anal Chem. 91:5508–5512. DOI:
10.1021/acs.analchem.9b01062. PMID:
30963760.
Article
14. Kawasaki H, Soma N, Kretsinger RH. 2019; Molecular dynamics study of the changes in conformation of calmodulin with calcium binding and/or target recognition. Sci Rep. 9:10688. DOI:
10.1038/s41598-019-47063-1. PMID:
31337841. PMCID:
PMC6650393.
Article
16. Kovalevskaya NV, van de Waterbeemd M, Bokhovchuk FM, Bate N, Bindels RJ, Hoenderop JG, Vuister GW. 2013; Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Pflugers Arch. 465:1507–1519. DOI:
10.1007/s00424-013-1278-0. PMID:
23609407.
Article
17. Shah VN, Chagot B, Chazin WJ. 2006; Calcium-dependent regulation of ion channels. Calcium Bind Proteins. 1:203–212. PMID:
28757812. PMCID:
PMC5531595.
18. Budde T, Meuth S, Pape HC. 2002; Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci. 3:873–883. DOI:
10.1038/nrn959. PMID:
12415295.
Article
20. Wang C, Chung BC, Yan H, Wang HG, Lee SY, Pitt GS. 2014; Structural analyses of Ca
2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. Nat Commun. 5:4896. DOI:
10.1038/ncomms5896. PMID:
25232683. PMCID:
PMC4170523.
Article
21. Shah VN, Wingo TL, Weiss KL, Williams CK, Balser JR, Chazin WJ. 2006; Calcium-dependent regulation of the voltage-gated sodium channel hH1: intrinsic and extrinsic sensors use a common molecular switch. Proc Natl Acad Sci U S A. 103:3592–3597. DOI:
10.1073/pnas.0507397103. PMID:
16505387. PMCID:
PMC1450128.
Article
22. Ben Johny M, Yang PS, Bazzazi H, Yue DT. 2013; Dynamic switching of calmodulin interactions underlies Ca
2+ regulation of CaV1.3 channels. Nat Commun. 4:1717. DOI:
10.1038/ncomms2727. PMID:
23591884. PMCID:
PMC3856249.
Article
23. Gordon-Shaag A, Zagotta WN, Gordon SE. 2008; Mechanism of Ca
2+-dependent desensitization in TRP channels. Channels (Austin). 2:125–129. DOI:
10.4161/chan.2.2.6026. PMID:
18849652.
24. Hasan R, Leeson-Payne AT, Jaggar JH, Zhang X. 2017; Calmodulin is responsible for Ca
2+-dependent regulation of TRPA1 channels. Sci Rep. 7:45098. DOI:
10.1038/srep45098. PMID:
28332600. PMCID:
PMC5362816.
Article
25. Zhu MX. 2005; Multiple roles of calmodulin and other Ca
2+-binding proteins in the functional regulation of TRP channels. Pflugers Arch. 451:105–115. DOI:
10.1007/s00424-005-1427-1. PMID:
15924238.
26. Polat OK, Uno M, Maruyama T, Tran HN, Imamura K, Wong CF, Sakaguchi R, Ariyoshi M, Itsuki K, Ichikawa J, Morii T, Shirakawa M, Inoue R, Asanuma K, Reiser J, Tochio H, Mori Y, Mori MX. 2019; Contribution of coiled-coil assembly to Ca
2+/calmodulin-dependent inactivation of TRPC6 channel and its impacts on FSGS-associated phenotypes. J Am Soc Nephrol. 30:1587–1603. DOI:
10.1681/ASN.2018070756. PMID:
31266820.
27. Dang S, van Goor MK, Asarnow D, Wang Y, Julius D, Cheng Y, van der Wijst J. 2019; Structural insight into TRPV5 channel function and modulation. Proc Natl Acad Sci U S A. 116:8869–8878. DOI:
10.1073/pnas.1820323116. PMID:
30975749. PMCID:
PMC6500171.
Article
32. Mruk K, Farley BM, Ritacco AW, Kobertz WR. 2014; Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 144:105–114. DOI:
10.1085/jgp.201311140. PMID:
24935744. PMCID:
PMC4076516.
Article
33. Sunagawa M, Kosugi T, Nakamura M, Sperelakis N. 2000; Pharmacological actions of calmidazolium, a calmodulin antagonist, in cardiovascular system. Cardiovasc Drug Rev. 18:211–221. DOI:
10.1111/j.1527-3466.2000.tb00044.x.
Article
34. Kumar S, Kain V, Sitasawad SL. 2009; Cardiotoxicity of calmidazolium chloride is attributed to calcium aggravation, oxidative and nitrosative stress, and apoptosis. Free Radic Biol Med. 47:699–709. DOI:
10.1016/j.freeradbiomed.2009.05.028. PMID:
19497364.
Article
35. Lau SY, Procko E, Gaudet R. 2012; Distinct properties of Ca
2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol. 140:541–555. DOI:
10.1085/jgp.201210810. PMID:
23109716. PMCID:
PMC3483115.