Intest Res.  2020 Jan;18(1):79-84. 10.5217/ir.2019.00107.

The prevalence of sarcopenia and its effect on prognosis in patients with Crohn’s disease

Affiliations
  • 1Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
  • 2Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea

Abstract

Background/Aims
Crohn’s disease is associated with altered body composition, such as low muscle mass, which can affect clinical outcomes. However, there are few studies regarding the effect of sarcopenia on prognosis of Crohn’s disease. In this study, we evaluated the body composition at the initial diagnosis of Crohn’s disease and analyzed the clinical meaning of sarcopenia.
Methods
We conducted a retrospective review of medical records of patients who were diagnosed as Crohn’s disease and underwent computed tomography within 3 months after diagnosis. Sarcopenia was defined as an L3 skeletal muscle index (SMI) of < 49 cm2/m2 for men and < 31 cm2/m2 for women. Outcomes such as need for hospitalization, surgery, use of steroids, immunomodulators and biologics were analyzed.
Results
A total of 79 patients (male, 73.4%; mean age, 29.9 years) were included and 40 patients (51%) were diagnosed as sarcopenia. C-reactive protein (CRP) level was correlated with sarcopenia (P= 0.044). Erythrocyte sedimentation rate (ESR) showed a tendency to decrease inversely with SMI (r = –0.320, P= 0.008) and hemoglobin and albumin tended to increase in proportion to SMI (hemoglobin: r = 0.271, P= 0.016 and albumin: r = 0.350, P= 0.002). However, there was no statistically significance in time-to-first-event analysis in aspects of sarcopenia.
Conclusions
Approximately 50% of patients with newly diagnosed as Crohn’s disease had sarcopenia. CRP levels were higher in the sarcopenia group and SMI correlated with ESR, hemoglobin, and albumin. However, none of prognostic values were demonstrated.

Keyword

Crohn disease; Prevalence; Sarcopenia; Prognosis

Figure

  • Fig. 1. The skeletal muscle area (SMA) measured at the L3 vertebral level. The skeletal muscle index, which defines sarcopenia, is the SMA divided by the height squared. Purple is SMA measured in patients with CD without sarcopenia and blue is SMA measured in patients with CD with sarcopenia.

  • Fig. 2. Time-to-first-event analysis by Kaplan-Meier methods in patients with or without sarcopenia: cumulative operation-free survival rate (A), hospitalization-free survival rate (B), biologics-free survival rate (C), immunomodulators-free survival rate (D), and corticosteroid-free survival rate (E).


Reference

1. Lakatos L, Lakatos PL. Is the incidence and prevalence of inflammatory bowel diseases increasing in Eastern Europe? Postgrad Med J. 2006; 82:332–337.
Article
2. Canavan C, Abrams KR, Mayberry JF. Meta-analysis: mortality in Crohn’s disease. Aliment Pharmacol Ther. 2007; 25:861–870.
Article
3. Dieleman LA, Heizer WD. Nutritional issues in inflammatory bowel disease. Gastroenterol Clin North Am. 1998; 27:435–451.
Article
4. Hebuterne X, Filippi J, Schneider SM. Nutrition in adult patients with inflammatory bowel disease. Curr Drug Targets. 2014; 15:1030–1038.
Article
5. Ling SC, Griffiths AM. Nutrition in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2000; 3:339–344.
Article
6. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults: current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011; 12:249–256.
Article
7. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50:889–896.
Article
8. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. 2016; 57:58–67.
Article
9. Zhang T, Cao L, Cao T, et al. Prevalence of sarcopenia and its impact on postoperative outcome in patients with Crohn’s disease undergoing bowel resection. JPEN J Parenter Enteral Nutr. 2017; 41:592–600.
Article
10. Pedersen M, Cromwell J, Nau P. Sarcopenia is a predictor of surgical morbidity in inflammatory bowel disease. Inflamm Bowel Dis. 2017; 23:1867–1872.
Article
11. Adams DW, Gurwara S, Silver HJ, et al. Sarcopenia is common in overweight patients with inflammatory bowel disease and may predict need for surgery. Inflamm Bowel Dis. 2017; 23:1182–1186.
Article
12. Bamba S, Sasaki M, Takaoka A, et al. Sarcopenia is a predictive factor for intestinal resection in admitted patients with Crohn’s disease. PLoS One. 2017; 12:e0180036.
Article
13. Holt DQ, Strauss BJ, Lau KK, Moore GT. Body composition analysis using abdominal scans from routine clinical care in patients with Crohn’s Disease. Scand J Gastroenterol. 2016; 51:842–847.
Article
14. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008; 33:997–1006.
Article
15. Kim YS, Lee Y, Chung YS, et al. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J Gerontol A Biol Sci Med Sci. 2012; 67:1107–1113.
Article
16. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994; 4:368–381.
Article
17. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017; 16:21.
Article
18. Thiberge C, Charpentier C, Gillibert A, et al. Lower subcutaneous or visceral adiposity assessed by abdominal computed tomography could predict adverse outcome in patients with Crohn’s disease. J Crohns Colitis. 2018; 12:1429–1437.
Article
19. Lee YH, Kim SU, Song K, et al. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: nationwide surveys (KNHANES 2008-2011). Hepatology. 2016; 63:776–786.
Article
20. Kim EY, Kim YS, Park I, Ahn HK, Cho EK, Jeong YM. Prognostic significance of CT-determined sarcopenia in patients with small-cell lung cancer. J Thorac Oncol. 2015; 10:1795–1799.
Article
21. Lee JS, Kim YS, Kim EY, Jin W. Prognostic significance of CTdetermined sarcopenia in patients with advanced gastric cancer. PLoS One. 2018; 13:e0202700.
Article
22. Best WR, Becktel JM, Singleton JW, Kern F Jr. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology. 1976; 70:439–444.
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr