Diabetes Metab J.  2020 Feb;44(1):143-157. 10.4093/dmj.2019.0078.

Association of Soybean Food Intake and Cardiometabolic Syndrome in Korean Women: Korea National Health and Nutrition Examination Survey (2007 to 2011)

  • 1Department of Human Ecology, Graduate School of Korea University, Seoul, Korea. yookyung_kim@korea.ac.kr
  • 2Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea. shiningwk@gmail.com


Soybean food consumption has been considered as a possible way to lower incidence of cardiometabolic syndrome (CMS) among Asians. However, results from studies investigating its efficacy on CMS in Asians have been inconsistent.
We analyzed the association between soybean intake frequency and prevalence of CMS based on data from the Korea National Health and Nutrition Examination Survey 2007 to 2011. Data of 9,287 women aged 20 to 64 years were analyzed. Food frequency questionnaire was used to assess soybean food consumption frequency. General linear model and multivariable logistic regression model were used to examine the association of soybean intake quintile with CMS and its risk factors. Least square means of metabolic factors mostly showed no significant relevance except liver indexes.
Compared to participants in the 1st quintile (<2 times/week of soybean food), odds ratios (OR) for CMS and abdominal obesity (AO) in the 4th quintile (8.5 times/weekCONCLUSION
Our findings suggest that soybean intake of 8.5 to 17 times/week was inversely associated with CMS in Korean women. The relation between soybean intake >17 times/week and CMS varied depending on soybean food items.


Diabetes mellitus; Korea; Obesity, abdominal; Soy foods

MeSH Terms

Asian Continental Ancestry Group
Diabetes Mellitus
Linear Models
Logistic Models
Nutrition Surveys*
Obesity, Abdominal
Odds Ratio
Risk Factors
Soy Foods


  • Fig. 1 Flow chart of participants. KNHANES, Korea National Health and Nutrition Examination Survey; DM, diabetes mellitus; HTN, hypertension.


1. World Health Organization. Noncommunicable diseases country profiles 2011. cited 2019 Oct 22. Available from: http://www.who.int/nmh/publications/ncd_profiles2011/en/.
2. Sapbamrer R, Visavarungroj N, Suttajit M. Effects of dietary traditional fermented soybean on reproductive hormones, lipids, and glucose among postmenopausal women in northern Thailand. Asia Pac J Clin Nutr. 2013; 22:222–228.
3. Tran BT, Jeong BY, Oh JK. The prevalence trend of metabolic syndrome and its components and risk factors in Korean adults: results from the Korean National Health and Nutrition Examination Survey 2008-2013. BMC Public Health. 2017; 17:71.
4. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015; 313:1973–1974.
5. Tovar J, Johansson M, Bjorck I. A multifunctional diet improves cardiometabolic-related biomarkers independently of weight changes: an 8-week randomized controlled intervention in healthy overweight and obese subjects. Eur J Nutr. 2016; 55:2295–2306.
6. Ministry of Health and Welfare (South Korea). '95 National Nutrition Survey Report, No 40000-65312-56-04. Seoul: Ministry of Health and Welfare;1997. p. 115–170.
7. Van Erp-Baart MA, Brants HA, Kiely M, Mulligan A, Turrini A, Sermoneta C, Kilkkinen A, Valsta LM. Isoflavone intake in four different European countries: the VENUS approach. Br J Nutr. 2003; 89 Suppl 1:S25–S30.
8. Chun OK, Chung SJ, Song WO. Urinary isoflavones and their metabolites validate the dietary isoflavone intakes in US adults. J Am Diet Assoc. 2009; 109:245–254.
9. Messina MJ. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr. 1999; 70(3 Suppl):439S–450S.
10. Nanri A, Mizoue T, Takahashi Y, Kirii K, Inoue M, Noda M, Tsugane S. Soy product and isoflavone intakes are associated with a lower risk of type 2 diabetes in overweight Japanese women. J Nutr. 2010; 140:580–586.
11. Aoyama T, Fukui K, Nakamori T, Hashimoto Y, Yamamoto T, Takamatsu K, Sugano M. Effect of soy and milk whey protein isolates and their hydrolysates on weight reduction in genetically obese mice. Biosci Biotechnol Biochem. 2000; 64:2594–2600.
12. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr. 2002; 76:1191–1201.
13. Cai Y, Guo K, Chen C, Wang P, Zhang B, Zhou Q, Mei F, Su Y. Soya isoflavone consumption in relation to carotid intima-media thickness in Chinese equol excretors aged 40-65 years. Br J Nutr. 2012; 108:1698–1704.
14. Rosell MS, Appleby PN, Spencer EA, Key TJ. Soy intake and blood cholesterol concentrations: a cross-sectional study of 1033 pre- and postmenopausal women in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2004; 80:1391–1396.
15. Morimoto Y, Steinbrecher A, Kolonel LN, Maskarinec G. Soy consumption is not protective against diabetes in Hawaii: the Multiethnic Cohort. Eur J Clin Nutr. 2011; 65:279–282.
16. Matthan NR, Jalbert SM, Ausman LM, Kuvin JT, Karas RH, Lichtenstein AH. Effect of soy protein from differently processed products on cardiovascular disease risk factors and vascular endothelial function in hypercholesterolemic subjects. Am J Clin Nutr. 2007; 85:960–966.
17. Saraf-Bank S, Esmaillzadeh A, Faghihimani E, Azadbakht L. Effects of legume-enriched diet on cardiometabolic risk factors among individuals at risk for diabetes: a crossover study. J Am Coll Nutr. 2016; 35:31–40.
18. Pan A, Franco OH, Ye J, Demark-Wahnefried W, Ye X, Yu Z, Li H, Lin X. Soy protein intake has sex-specific effects on the risk of metabolic syndrome in middle-aged and elderly Chinese. J Nutr. 2008; 138:2413–2421.
19. Jenkins DJ, Kendall CW, Connelly PW, Jackson CJ, Parker T, Faulkner D, Vidgen E. Effects of high- and low-isoflavone (phytoestrogen) soy foods on inflammatory biomarkers and proinflammatory cytokines in middle-aged men and women. Metabolism. 2002; 51:919–924.
20. Lee MJ, Sohn CY, Park OJ. Relation between health status and intake of soy isoflavone among adult women in Seoul. J East Asian Soc Diet Life. 2010; 20:218–230.
21. Ye YB, Chen AL, Lu W, Zhuo SY, Liu J, Guan JH, Deng WP, Fang S, Li YB, Chen YM. Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial. Mol Nutr Food Res. 2015; 59:240–249.
22. Byun MS, Yu OK, Cha YS, Park TS. Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: a double-blind, randomized, crossover, placebo-controlled clinical trial. Eur J Clin Nutr. 2016; 70:1116–1122.
23. Kwon DY, Daily JW 3rd, Kim HJ, Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res. 2010; 30:1–13.
24. Ministry of Health and Welfare. Welfare and family welfare dietary reference intakes for Koreans 2015. cited 2019 Oct 22. Available from: https://www.mohw.go.kr.
25. Koo S, Kim Y, Kim MK, Yoon JS, Park K. Nutrient intake, lifestyle factors and prevalent hypertension in Korean adults: results from 2007-2008 Korean National Health and Nutrition Examination Survey. Korean J Community Nutr. 2012; 17:329–340.
26. Kang K, Sung J, Kim CY. High risk groups in health behavior defined by clustering of smoking, alcohol, and exercise habits: National Heath and Nutrition Examination Survey. J Prev Med Public Health. 2010; 43:73–83.
27. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, Kim DY, Kwon HS, Kim SR, Lee CB, Oh SJ, Park CY, Yoo HJ. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract. 2007; 75:72–80.
28. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28:412–419.
29. Lim S, Oh TJ, Koh KK. Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. Int J Cardiol. 2015; 201:408–414.
30. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002; 346:1221–1231.
31. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, Lundbom N, Rissanen A, Ridderstrale M, Groop L, Orho-Melander M, Yki-Jarvinen H. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009; 137:865–872.
32. Treatment Guidelines Commission of the Korean Society for the Study of Obesity. Obesity treatment guidelines 2018. Seoul: Cheongun;2018.
33. Park S, Ahn J, Kim NS, Lee BK. High carbohydrate diets are positively associated with the risk of metabolic syndrome irrespective to fatty acid composition in women: the KNHANES 2007-2014. Int J Food Sci Nutr. 2017; 68:479–487.
34. Jung HJ, Song WO, Paik HY, Joung H. Dietary characteristics of macronutrient intake and the status of metabolic syndrome among Koreans. Korean J Nutr. 2011; 44:119–130.
35. Wang JW, Mark S, Henderson M, O'Loughlin J, Tremblay A, Wortman J, Paradis G, Gray-Donald K. Adiposity and glucose intolerance exacerbate components of metabolic syndrome in children consuming sugar-sweetened beverages: QUALITY cohort study. Pediatr Obes. 2013; 8:284–293.
36. Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem. 2006; 17:365–373.
37. Iqbal MJ, Yaegashi S, Ahsan R, Lightfoot DA, Banz WJ. Differentially abundant mRNAs in rat liver in response to diets containing soy protein isolate. Physiol Genomics. 2002; 11:219–226.
38. Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies. Eur J Prev Cardiol. 2017; 24:735–747.
39. Lee MJ, Kim JH. Estimated dietary isoflavone intake among Korean adults. Nutr Res Pract. 2007; 1:206–211.
40. Choi MK, Kim MH, Sung CJ, Lee WY, Park JD. A study on relation among habitual isoflavone intake, blood pressure, and serum lipid parameters in Korean men and women over 20 years old. Korean J Community Nutr. 2005; 10:493–500.
41. Paul G, Mendelson GJ. Evidence supports the use of soy protein to promote cardiometabolic health and muscle development. J Am Coll Nutr. 2015; 34 Suppl 1:56–59.
42. Van Nielen M, Feskens EJ, Rietman A, Siebelink E, Mensink M. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity. J Nutr. 2014; 144:1423–1429.
43. Anthony MS, Clarkson TB, Williams JK. Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am J Clin Nutr. 1998; 68(6 Suppl):1390S–1393S.
44. Sorbi D, Boynton J, Lindor KD. The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am J Gastroenterol. 1999; 94:1018–1022.
45. Hanley AJ, Williams K, Festa A, Wagenknecht LE, D'Agostino RB Jr, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes. 2005; 54:3140–3147.
46. Yadav D, Choi E, Ahn SV, Baik SK, Cho YZ, Koh SB, Huh JH, Chang Y, Sung KC, Kim JY. Incremental predictive value of serum AST-to-ALT ratio for incident metabolic syndrome: the ARIRANG Study. PLoS One. 2016; 11:e0161304.
47. Mueller NT, Odegaard AO, Gross MD, Koh WP, Yu MC, Yuan JM, Pereira MA. Soy intake and risk of type 2 diabetes in Chinese Singaporeans [corrected]. Eur J Nutr. 2012; 51:1033–1040.
48. Joo EY, Park CS. Antioxidant and fibrinolytic activities of extracts from soybean and Chungkukjang (fermented soybean paste). Korean J Food Preserv. 2011; 18:930–937.
Full Text Links
  • DMJ
export Copy
  • Twitter
  • Facebook
Similar articles
Copyright © 2023 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr