J Adv Prosthodont.  2020 Feb;12(1):9-14. 10.4047/jap.2020.12.1.9.

The effects of repetitive firing processes on the optical, thermal, and phase formation changes of zirconia

Affiliations
  • 1Department of Prosthodontics, Faculty of Dentistry, Atatürk University, Erzurum, Turkey. alprozdgn@gmail.com

Abstract

PURPOSE
The aim of this study was to investigate the effect of different numbers of heat treatments applied to superstructure porcelain on optical, thermal, and phase formation properties of zirconia.
MATERIALS AND METHODS
Forty zirconia specimens were prepared in the form of rectangular prism. Specimens were divided into four groups (n = 10) according to the number of firing at heating values of porcelain. Color differences and translucency parameter were measured, and X-ray diffraction (XRD) analysis and differential scanning calorimetry (DSC) were performed. Data were analyzed with analysis of variance (ANOVA).
RESULTS
There were no statistically significant differences in ΔE, TP, L, a, and b value changes of the zirconia specimens as a result of repetitive firing processes (P>.05).
CONCLUSION
Although additional firing processes up to 4 increase peak density in thermal analysis, additional firing processes up to 4 times can be applied safely as they do not result in a change in color and phase character of zircon frameworks.

Keyword

Optical properties; Phase formation; Repetitive firing; Zirconia framework

MeSH Terms

Calorimetry, Differential Scanning
Dental Porcelain
Fires*
Heating
Hot Temperature
X-Ray Diffraction
Dental Porcelain

Figure

  • Fig. 1 The XRD analysis of the groups of the repeated firing processes.

  • Fig. 2 The DSC analysis of the groups of the repeated firing processes.


Reference

1. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999; 20:1–25. PMID: 9916767.
Article
2. Clarke IC, Manaka M, Green DD, Williams P, Pezzotti G, Kim YH, Ries M, Sugano N, Sedel L, Delauney C, Nissan BB, Donaldson T, Gustafson GA. Current status of zirconia used in total hip implants. J Bone Joint Surg Am. 2003; 85-A:73–84.
Article
3. Ban S. Properties of zirconia for realization of all-ceramic restoration. J Tokyo Dent Coll Soc. 2007; 107:670–684.
4. Koçak EF, Uçar Y, Kurtoğlu C, Johnston WM. Color and translucency of zirconia infrastructures and porcelain-layered systems. J Prosthet Dent. 2019; 121:510–516. PMID: 30477923.
Article
5. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009; 28:44–56. PMID: 19280967.
Article
6. Prasad HA, Pasha N, Hilal M, Amarnath GS, Kundapur V, Anand M, Singh S. To evaluate effect of airborne particle abrasion using different abrasives particles and compare two commercial available zirconia on flexural strength on heat treatment. Int J Biomed Sci. 2017; 13:93–112. PMID: 28824346.
7. Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res. 2002; 81:487–491. PMID: 12161462.
8. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006; 27:535–543. PMID: 16143387.
Article
9. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008; 24:289–298. PMID: 17624420.
Article
10. Souza RO, Valandro LF, Melo RM, Machado JP, Bottino MA, Ozcan M. Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater. 2013; 26:155–163. PMID: 23746698.
Article
11. Ramos GF, Pereira GK, Amaral M, Valandro LF, Bottino MA. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic. Braz Oral Res. 2016; 30:S1806-83242016000100012.
Article
12. Aurélio IL, Dorneles LS, May LG. Extended glaze firing on ceramics for hard machining: Crack healing, residual stresses, optical and microstructural aspects. Dent Mater. 2017; 33:226–240. PMID: 28069245.
Article
13. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent. 2002; 88:10–15. PMID: 12239473.
Article
14. Barghi N, Goldberg . Porcelain shade stability after repeated firing. J Prosthet Dent. 1977; 37:173–175. PMID: 264553.
Article
15. Jorgenson MW, Goodkind RJ. Spectrophotometric study of five porcelain shades relative to the dimensions of color, porcelain thickness, and repeated firings. J Prosthet Dent. 1979; 42:96–105. PMID: 287794.
Article
16. Barghi N, Lorenzana RE. Optimum thickness of opaque and body porcelain. J Prosthet Dent. 1982; 48:429–431. PMID: 6957597.
17. O'Brien WJ, Kay KS, Boenke KM, Groh CL. Sources of color variation on firing porcelain. Dent Mater. 1991; 7:170–173. PMID: 1813339.
18. Matsui K, Yoshida H, Ikuhara Y. Isothermal sintering effects on phase separation and grain growth in yttria-stabilized tetragonal zirconia polycrystal. J Am Ceram Soc. 2009; 92:467–475.
Article
19. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 2014; 30:e419–e424. PMID: 25262211.
Article
20. Stawarczyk B, Emslander A, Roos M, Sener B, Noack F, Keul C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent Mater J. 2014; 33:591–598. PMID: 24998170.
Article
21. Nogueira AD, Della Bona A. The effect of a coupling medium on color and translucency of CAD-CAM ceramics. J Dent. 2013; 41:e18–e23. PMID: 23438417.
Article
22. Alghazali N, Burnside G, Moallem M, Smith P, Preston A, Jarad FD. Assessment of perceptibility and acceptability of color difference of denture teeth. J Dent. 2012; 40:e10–e17. PMID: 22561647.
Article
23. Shiraishi T, Watanabe I. Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications. Dent Mater. 2016; 32:660–667. PMID: 26925845.
Article
24. Ikeda T, Sidhu SK, Omata Y, Fujita M, Sano H. Colour and translucency of opaque-shades and body-shades of resin composites. Eur J Oral Sci. 2005; 113:170–173. PMID: 15819825.
Article
25. Silva LH, Costa AK, Queiroz JR, Bottino MA, Valandro LF. Ceramic primer heat-treatment effect on resin cement/Y-TZP bond strength. Oper Dent. 2012; 37:634–640. PMID: 22621166.
Article
26. Srinivasan R, Davis HB, Cavin OB, Hubbard CR. Crystallization and phase transformation process in zirconia: An in situ high-temperature x-ray diffraction study. J Am Ceram Soc. 1992; 75:1217–1222.
Article
27. Shokry TE, Shen C, Elhosary MM, Elkhodary AM. Effect of core and veneer thicknesses on the color parameters of two all-ceramic systems. J Prosthet Dent. 2006; 95:124–129. PMID: 16473086.
Article
28. Knispel G. Factors affecting the process of color matching restorative materials to natural teeth. Quintessence Int. 1991; 22:525–531. PMID: 1882045.
29. Turgut S, Bagis B, Turkaslan SS, Bagis YH. Effect of ultraviolet aging on translucency of resin-cemented ceramic veneers: an in vitro study. J Prosthodont. 2014; 23:39–44. PMID: 23725214.
Article
30. Isfahani TD, Javadpour J, Khavandi A, Goodarzi M, Rezaie HR. Nanocrystalline growth activation energy of zirconia polymorphs synthesized by mechanochemical technique. J Mater Sci Technol. 2014; 30:387–393.
31. Abualsaud H, Zandparsa R, Hirayama H, Sadig W, Aboushelib M, Salameh Z. Color management of the cervical region using different framework materials. J Esthet Restor Dent. 2011; 23:371–378. PMID: 22142295.
Article
32. Tabatabaian F. Color in zirconia-based restorations and related factors: A literature review. J Prosthodont. 2018; 27:201–211. PMID: 29315947.
Article
33. Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent. 2019; 9. 13.
Article
34. Juntavee N, Attashu S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J Clin Exp Dent. 2018; 10:e794–e804. PMID: 30305879.
Article
35. Ozturk O, Uludag B, Usumez A, Sahin V, Celik G. The effect of ceramic thickness and number of firings on the color of two all-ceramic systems. J Prosthet Dent. 2008; 100:99–106. PMID: 18672126.
Article
36. Bachhav VC, Aras MA. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology. J Adv Prosthodont. 2011; 3:57–62. PMID: 21814612.
Article
37. Li S, Pang L, Yao J. The effects of firing numbers on the opening total pore volume, translucency parameter and color of dental all-ceramic systems. Hua Xi Kou Qiang Yi Xue Za Zhi. 2012; 30:417–419. PMID: 22934503.
38. Fathi A, Farzin M, Giti R, Kalantari MH. Effects of number of firings and veneer thickness on the color and translucency of 2 different zirconia-based ceramic systems. J Prosthet Dent. 2019; 122:565. PMID: 31699449.
Article
39. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater. 2011; 27:97–108. PMID: 21122905.
Article
40. Tuncel İ, Turp I, Üşümez A. Evaluation of translucency of monolithic zirconia and framework zirconia materials. J Adv Prosthodont. 2016; 8:181–186. PMID: 27350851.
Article
41. Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand. 2015; 1:86–92. PMID: 27335897.
Article
42. Vatali A, Kontonasaki E, Kavouras P, Kantiranis N, Papadopoulou L, Paraskevopoulos KK, Koidis P. Effect of heat treatment and in vitro aging on the microstructure and mechanical properties of cold isostatic-pressed zirconia ceramics for dental restorations. Dent Mater. 2014; 30:e272–e282. PMID: 24950805.
Article
43. Passos SP, Linke B, Major PW, Nychka JA. The effect of air-abrasion and heat treatment on the fracture behavior of Y-TZP. Dent Mater. 2015; 31:1011–1021. PMID: 26117560.
Article
44. Song JY, Park SW, Lee K, Yun KD, Lim HP. Fracture strength and microstructure of Y-TZP zirconia after different surface treatments. J Prosthet Dent. 2013; 110:274–280. PMID: 24079562.
Article
45. Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dent Mater J. 2008; 27:408–414. PMID: 18717169.
Article
46. Alkurt M, Yeşil Duymus Z, Gundogdu M. Effects of multiple firings on the microstructure of zirconia and veneering ceramics. Dent Mater J. 2016; 35:776–781. PMID: 27725514.
Article
47. Öztürk C, Çelik E. Influence of heating rate on the flexural strength of monolithic zirconia. J Adv Prosthodont. 2019; 11:202–208. PMID: 31497267.
Article
48. Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993; 40:931–939.
Article
Full Text Links
  • JAP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr