1. Levi N. The incidence of Achilles tendon rupture in Copenhagen. Injury. 1997; 28:311–313.
2. Nillius SA, Nilsson BE, Westlin NE. The incidence of Achilles tendon rupture. Acta Orthop Scand. 1976; 47:118–121.
3. Pivarnik JM, Reeves MJ, Rafferty AP. Seasonal variation in adult leisure-time physical activity. Med Sci Sports Exerc. 2003; 35:1004–1008.
4. Heo YM, Yi JW, Oh BH, Jun JB, Cho HJ, Kim TG. Study on the orthopedic characteristics of bicycle injury patients. Korean J Sports Med. 2018; 36:1–6.
5. Suchak AA, Bostick G, Reid D, Blitz S, Jomha N. The incidence of Achilles tendon ruptures in Edmonton, Canada. Foot Ankle Int. 2005; 26:932–936.
6. Houshian S, Tscherning T, Riegels-Nielsen P. The epidemiology of Achilles tendon rupture in a Danish county. Injury. 1998; 29:651–654.
7. Caldwell JE, Lightsey HM, Trofa DP, Swindell HW, Greisberg JK, Vosseller JT. Seasonal variation of Achilles tendon injury. J Am Acad Orthop Surg Glob Res Rev. 2018; 2:e043.
8. Scott A, Grewal N, Guy P. The seasonal variation of Achilles tendon ruptures in Vancouver, Canada: a retrospective study. BMJ Open. 2014; 4:e004320.
9. Sheth U, Wasserstein D, Jenkinson R, Moineddin R, Kreder H, Jaglal SB. The epidemiology and trends in management of acute Achilles tendon ruptures in Ontario, Canada: a population-based study of 27 607 patients. Bone Joint J. 2017; 99:78–86.
10. Cervellin G, Comelli I, Lippi G. Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. J Epidemiol Glob Health. 2017; 7:185–189.
11. Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection: harnessing the Web for public health surveillance. N Engl J Med. 2009; 360:2153–2155.
13. Strotman PK, Novicoff WM, Nelson SJ, Browne JA. Increasing public interest in stem cell injections for osteoarthritis of the hip and knee: a Google Trends analysis. J Arthroplasty. 2019; 34:1053–1057.
14. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009; 457:1012–1014.
16. Ingram DG, Matthews CK, Plante DT. Seasonal trends in sleep-disordered breathing: evidence from Internet search engine query data. Sleep Breath. 2015; 19:79–84.
17. Ingram DG, Plante DT. Seasonal trends in restless legs symptomatology: evidence from Internet search query data. Sleep Med. 2013; 14:1364–1368.
18. Kardes S. Seasonal variation in the internet searches for gout: an ecological study. Clin Rheumatol. 2019; 38:769–775.
19. Kardes S, Kardes E. Seasonality of bruxism: evidence from Google Trends. Sleep Breath. 2019; 23:695–701.
20. Plante DT, Ingram DG. Seasonal trends in tinnitus symptomatology: evidence from Internet search engine query data. Eur Arch Otorhinolaryngol. 2015; 272:2807–2813.
21. Toosi B, Kalia S. Seasonal and geographic patterns in tanning using real-time data from Google Trends. JAMA Dermatol. 2016; 152:215–217.
22. Barnett AG, Baker P, Dobson AJ. Analysing seasonal data. R J. 2012; 4:5–10.
25. World Meteorological Organization. Mean daily minimum/maximum temperature of Vancouver, British Columbia in 30 years [Internet]. Geneva (CH): World Meteorological Organization;2019. cited 2019 Nov 1. Available from:
http://worldweather.wmo.int/en/city.html?cityId=266.
26. World Meteorological Organization. Mean daily minimum/maximum temperature of New York city, New York in 30 years [Internet]. Geneva (CH): World Meteorological Organization;2019. cited 2019 Nov 1. Available from:
http://worldweather.wmo.int/en/city.html?cityId=278.
27. Institute of Medicine (US) Committee on a National Surveillance System for Cardiovascular and Select Chronic Diseases. A nationwide framework for surveillance of cardiovascular and chronic lung diseases. Washington (DC): National Academies Press (US);2011.
28. Nuti SV, Wayda B, Ranasinghe I, et al. The use of Google Trends in health care research: a systematic review. PLoS One. 2014; 9:e109583.