Yonsei Med J.  2016 Jan;57(1):88-96. 10.3349/ymj.2016.57.1.88.

Comparative Evaluation of Several Gene Targets for Designing a Multiplex-PCR for an Early Diagnosis of Extrapulmonary Tuberculosis

Affiliations
  • 1Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India. pkmehta3@hotmail.com
  • 2Department of TB & Respiratory Medicine, Postgraduate Institute of Medical Sciences (PGIMS), Rohtak, India.
  • 3Department of Pulmonary and Critical Care Medicine, Postgraduate Institute of Medical Sciences (PGIMS), Rohtak, India.
  • 4Department of Microbiology, Postgraduate Institute of Medical Sciences (PGIMS), Rohtak, India.
  • 5Rajan Babu Institute of Pulmonary Medicine and Tuberculosis (RBIPMT), Delhi, India.
  • 6Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
  • 7Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.

Abstract

PURPOSE
Diagnosis of extrapulmonary tuberculosis (EPTB) poses serious challenges. A careful selection of appropriate gene targets is essential for designing a multiplex-polymerase chain reaction (M-PCR) assay.
MATERIALS AND METHODS
We compared several gene targets of Mycobacterium tuberculosis, including IS6110, devR, and genes encoding MPB-64 (mpb64), 38kDa (pstS1), 65kDa (hsp65), 30kDa (fbpB), ESAT-6 (esat6), and CFP-10 (cfp10) proteins, using PCR assays on 105 EPTB specimens. From these data, we chose the two best gene targets to design an M-PCR.
RESULTS
Among all gene targets tested, mpb64 showed the highest sensitivity (84% in confirmed cases and 77.5% in clinically suspected cases), followed by IS6110, hsp65, 38kDa, 30kDa, esat6, cfp10, and devR. We used mpb64+IS6110 for designing an M-PCR assay. Our M-PCR assay demonstrated a high sensitivity of 96% in confirmed EPTB cases and 88.75% in clinically suspected EPTB cases with a high specificity of 100%, taking clinical diagnosis as the gold standard.
CONCLUSION
These M-PCR results along with the clinical findings may facilitate an early diagnosis of EPTB patients and clinical management of disease.

Keyword

Mycobacterium tuberculosis; extrapulmonary tuberculosis; PCR; multiplex-PCR; diagnosis

MeSH Terms

Bacteriological Techniques/methods
DNA Transposable Elements/genetics
DNA, Bacterial/analysis/genetics
Early Diagnosis
Female
Gene Amplification
Humans
Male
Multiplex Polymerase Chain Reaction/*methods
Mycobacterium tuberculosis/genetics/*isolation & purification
Polymerase Chain Reaction/*methods/standards
Sensitivity and Specificity
Tuberculosis/*diagnosis
DNA Transposable Elements
DNA, Bacterial

Figure

  • Fig. 1 PCR gel picture of several gene targets tested on the same clinical EPTB specimens. L1, L18, L19, and L36 represent 100 bp molecular marker; L2, L6, L10, L14, L20, L24, L28, and L32 were positive controls with the purified M. tuberculosis H37RvDNA; L3, L7, L11, L15, L21, L25, L29, and L33 were negative controls without template DNA; L4, L5, L8, L9, L12, L13, L16, L17, L22, L23, L26, L27, L30, L31, L34, and L35 represent clinical EPTB specimens. EPTB, extrapulmonary tuberculosis.

  • Fig. 2 M-PCR: amplification of 163 bp region of mpb64 gene and 258 bp region of IS6110 of M. tuberculosis H37RvDNA in the same tube with different ratios of primers. L1 represents 100 bp molecular marker; L2, L3, L4, and L5 represent mpb64 and IS6110 primer concentrations (µM) in ratios of 0.2:0.2, 0.2:0.4, 0.4:0.4, and 0.4:0.2 with M. tuberculosis H37Rv DNA; L6, negative control (no template DNA). M-PCR, multiplex-polymerase chain reaction.

  • Fig. 3 M-PCR: amplification of 163 bp region of mpb64 gene and 258 bp region of IS6110 in the same tube; L1 and L11 represent 100 bp molecular marker; L2, positive control (M. tuberculosis H37Rv DNA); L3, negative control (no template DNA); L4, negative control (only PCR grade water); L5-8, representative positive clinical EPTB samples; L9-10, representative negative EPTB samples. M-PCR, multiplex-polymerase chain reaction; EPTB, extrapulmonary tuberculosis.


Reference

1. World health organization. Global tuberculosis report. Geneva, Switzerland: World Health Organization;2014.
2. Mehta PK, Raj A, Singh N, Khuller GK. Diagnosis of extrapulmonary tuberculosis by PCR. FEMS Immunol Med Microbiol. 2012; 66:20–36.
Article
3. RNTCP 2014 TB India. Revised national TB control program annual status report. New Delhi: Central TB Division;2014.
4. Mehta PK, Kalra M, Khuller GK, Behera D, Verma I. Development of an ultrasensitive polymerase chain reaction-amplified immunoassay based on Mycobacterial RD antigens: implications for the serodiagnosis of tuberculosis. Diagn Microbiol Infect Dis. 2012; 72:166–174.
Article
5. Makeshkumar V, Madhavan R, Narayanan S. Polymerase chain reaction targeting insertion sequence for the diagnosis of extrapulmonary tuberculosis. Indian J Med Res. 2014; 139:161–166.
6. Chakravorty S, Sen MK, Tyagi JS. Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol. 2005; 43:4357–4362.
Article
7. Haldar S, Bose M, Chakrabarti P, Daginawala HF, Harinath BC, Kashyap RS, et al. Improved laboratory diagnosis of tuberculosis--the Indian experience. Tuberculosis (Edinb). 2011; 91:414–426.
8. Negi SS, Anand R, Basir SF, Pasha ST, Gupta S, Khare S, et al. Protein antigen b (Pab) based PCR test in diagnosis of pulmonary and extra-pulmonary tuberculosis. Indian J Med Res. 2006; 124:81–88.
9. Bandyopadhyay D, Gupta S, Banerjee S, Gupta S, Ray D, Bhattacharya S, et al. Adenosine deaminase estimation and multiplex polymerase chain reaction in diagnosis of extra-pulmonary tuberculosis. Int J Tuberc Lung Dis. 2008; 12:1203–1208.
10. Sharma K, Sinha SK, Sharma A, Nada R, Prasad KK, Goyal K, et al. Multiplex PCR for rapid diagnosis of gastrointestinal tuberculosis. J Glob Infect Dis. 2013; 5:49–53.
Article
11. Sharma K, Gupta N, Sharma A, Singh G, Gupta PK, Rajwanshi A, et al. Multiplex polymerase chain reaction using insertion sequence 6110 (IS6110) and Mycobacterial protein fraction from BCG of Rm 0.64 in electrophoresis target genes for diagnosis of tuberculous lymphadenitis. Indian J Med Microbiol. 2013; 31:24–28.
Article
12. Tortoli E, Russo C, Piersimoni C, Mazzola E, Dal Monte P, Pascarella M, et al. Clinical validation of Xpert MTB/RIF for the diagnosis of extrapulmonary tuberculosis. Eur Respir J. 2012; 40:442–447.
Article
13. van Helden PD, Victor TC, Warren RM, van Helden EG. Isolation of DNA from Mycobacterium tubercolosis. Methods Mol Med. 2001; 54:19–30.
14. Srivastava R, Kumar D, Waskar MN, Sharma M, Katoch VM, Srivastava BS. Identification of a repetitive sequence belonging to a PPE gene of Mycobacterium tuberculosis and its use in diagnosis of tuberculosis. J Med Microbiol. 2006; 55(Pt 8):1071–1077.
Article
15. Pai M, Flores LL, Hubbard A, Riley LW, Colford JM Jr. Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: a systematic review and meta-analysis. BMC Infect Dis. 2004; 4:6.
Article
16. Vadwai V, Shetty A, Rodrigues C. Using likelihood ratios to estimate diagnostic accuracy of a novel multiplex nested PCR in extra-pulmonary tuberculosis. Int J Tuberc Lung Dis. 2012; 16:240–247.
Article
17. Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2014; 44:435–446.
Article
18. Sharma K, Sharma A, Sharma SK, Sen RK, Dhillon MS, Sharma M. Does multiplex polymerase chain reaction increase the diagnostic percentage in osteoarticular tuberculosis? A prospective evaluation of 80 cases. Int Orthop. 2012; 36:255–259.
Article
19. Rebollo MJ, San Juan Garrido R, Folgueira D, Palenque E, Díaz-Pedroche C, Lumbreras C, et al. Blood and urine samples as useful sources for the direct detection of tuberculosis by polymerase chain reaction. Diagn Microbiol Infect Dis. 2006; 56:141–146.
Article
20. Varma-Basil M, Kumar S, Arora J, Angrup A, Zozio T, Banavaliker JN, et al. Comparison of spoligotyping, Mycobacterial interspersed repetitive units typing and IS6110-RFLP in a study of genotypic diversity of Mycobacterium tuberculosis in Delhi, North India. Mem Inst Oswaldo Cruz. 2011; 106:524–535.
Article
21. Gupta A, Kulkarni S, Rastogi N, Anupurba S. A study of Mycobacterium tuberculosis genotypic diversity & drug resistance mutations in Varanasi, North India. Indian J Med Res. 2014; 139:892–902.
22. Sankar S, Kuppanan S, Balakrishnan B, Nandagopal B. Analysis of sequence diversity among IS6110 sequence of Mycobacterium tuberculosis: possible implications for PCR based detection. Bioinformation. 2011; 6:283–285.
Article
23. Jin XJ, Kim JM, Kim HK, Kim L, Choi SJ, Park IS, et al. Histopathology and TB-PCR kit analysis in differentiating the diagnosis of intestinal tuberculosis and Crohn's disease. World J Gastroenterol. 2010; 16:2496–2503.
Article
24. Rana T, Singh UB, Kulshrestha V, Kaushik A, Porwal C, Agarwal N, et al. Utility of reverse transcriptase PCR and DNA-PCR in the diagnosis of female genital tuberculosis. J Med Microbiol. 2011; 60(Pt 4):486–491.
Article
25. Balne PK, Modi RR, Choudhury N, Mohan N, Barik MR, Padhi TR, et al. Factors influencing polymerase chain reaction outcomes in patients with clinically suspected ocular tuberculosis. J Ophthalmic Inflamm Infect. 2014; 4:10.
Article
26. Negi SS, Anand R, Pasha ST, Gupta S, Basir SF, Khare S, et al. Diagnostic potential of IS6110, 38kDa, 65kDa and 85B sequence-based polymerase chain reaction in the diagnosis of Mycobacterium tuberculosis in clinical samples. Indian J Med Microbiol. 2007; 25:43–49.
Article
27. Kidane D, Olobo JO, Habte A, Negesse Y, Aseffa A, Abate G, et al. Identification of the causative organism of tuberculous lymphadenitis in ethiopia by PCR. J Clin Microbiol. 2002; 40:4230–4234.
Article
28. Kulkarni S, Vyas S, Supe A, Kadival G. Use of polymerase chain reaction in the diagnosis of abdominal tuberculosis. J Gastroenterol Hepatol. 2006; 21:819–823.
Article
29. Gopinath K, Singh S. Multiplex PCR assay for simultaneous detection and differentiation of Mycobacterium tuberculosis, Mycobacterium avium complexes and other Mycobacterial species directly from clinical specimens. J Appl Microbiol. 2009; 107:425–435.
Article
30. Chia JH, Wu TL, Su LH, Kuo AJ, Lai HC. Direct identification of Mycobacteria from smear-positive sputum samples using an improved multiplex polymerase chain reaction assay. Diagn Microbiol Infect Dis. 2012; 72:340–349.
Article
31. Kim Y, Choi Y, Jeon BY, Jin H, Cho SN, Lee H. A simple and efficient multiplex PCR assay for the identification of Mycobacterium genus and Mycobacterium tuberculosis complex to the species level. Yonsei Med J. 2013; 54:1220–1226.
Article
32. Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C gram-positive bacteria. Genome Biol. 2001; 2:RESEARCH0044.
33. Uplekar S, Heym B, Friocourt V, Rougemont J, Cole ST. Comparative genomics of esx genes from clinical isolates of Mycobacterium tuberculosis provides evidence for gene conversion and epitope variation. Infect Immun. 2011; 79:4042–4049.
Article
34. Mehta PK, Raj A, Singh NP, Khuller GK. Detection of potential microbial antigens by immuno-PCR (PCR-amplified immunoassay). J Med Microbiol. 2014; 63(Pt 5):627–641.
Article
35. Dubey A, Gwal R, Agrawal S. Mycobacterium tuberculosis detection in blood using multiplex nested polymerase chain reaction. Int J Tuberc Lung Dis. 2013; 17:1341–1345.
Article
36. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000; 13:559–570.
Article
37. Kulkarni S, Singh P, Memon A, Nataraj G, Kanade S, Kelkar R, et al. An in-house multiplex PCR test for the detection of Mycobacterium tuberculosis, its validation & comparison with a single target TB-PCR kit. Indian J Med Res. 2012; 135:788–794.
38. Sharma SK, Sethi S, Sharma M, Meharwal SK, Katoch VM, Jindal SK, et al. Development and evaluation of a multiplex polymerase chain reaction for the detection of Mycobacterium tuberculosis from pulmonary specimens. Scand J Infect Dis. 2012; 44:739–744.
Article
39. Tang TH, Ahmed SA, Musa M, Zainuddin ZF. Rapid detection of Mycobacterium tuberculosis in clinical samples by multiplex polymerase chain reaction (mPCR). World J Microbiol Biotechnol. 2013; 29:2389–2395.
Article
40. Hallur V, Sharma M, Sethi S, Sharma K, Mewara A, Dhatwalia S, et al. Development and evaluation of multiplex PCR in rapid diagnosis of abdominal tuberculosis. Diagn Microbiol Infect Dis. 2013; 76:51–55.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2022 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr