Korean J Pain.  2019 Oct;32(4):271-279. 10.3344/kjp.2019.32.4.271.

Increased white matter diffusivity associated with phantom limb pain

Affiliations
  • 1Department of Physical Medicine and Rehabilitation, Hallym University Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
  • 2Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
  • 3Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.
  • 4Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea. ohneum@gmail.com

Abstract

BACKGROUND
We utilized diffusion tensor imaging (DTI) to evaluate the cerebral white matter changes that are associated with phantom limb pain in patients with unilateral arm amputation. It was anticipated that this would complement previous research in which we had shown that changes in cerebral blood volume were associated with the cerebral pain network.
METHODS
Ten patients with phantom limb pain due to unilateral arm amputation and sixteen healthy age-matched controls were enrolled. The intensity of phantom limb pain was measured by the visual analogue scale (VAS) and depressive mood was assessed by the Hamilton depression rating scale. Diffusion tensor-derived parameters, including fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD), were computed from the DTI.
RESULTS
Compared with controls, the cases had alterations in the cerebral white matter as a consequence of phantom limb pain, manifesting a higher AD of white matter in both hemispheres symmetrically after adjusting for individual depressive moods. In addition, there were associations between the RD of white matter and VAS scores primarily in the hemispheres related to the missing hand and in the corpus callosum.
CONCLUSIONS
The phantom limb pain after unilateral arm amputation induced plasticity in the white matter. We conclude that loss of white matter integrity, particularly in the hemisphere connected with the missing hand, is significantly correlated with phantom limb pain.

Keyword

Amputation; Brain; Chronic Pain; Diffusion Tensor Imaging; Magnetic Resonance Imaging; Neuronal Plasticity; Phantom limb; White Matter

MeSH Terms

Amputation
Anisotropy
Arm
Blood Volume
Brain
Chronic Pain
Complement System Proteins
Corpus Callosum
Depression
Diffusion
Diffusion Tensor Imaging
Hand
Humans
Magnetic Resonance Imaging
Neuronal Plasticity
Phantom Limb*
Plastics
White Matter*
Complement System Proteins
Plastics

Figure

  • Fig. 1 Mapping of axial diffusivity (AD) in patients vs. controls. The images show the distributions of white matter structures in which the AD values were higher in patients with phantom limb pain than in healthy controls without pain, adjusted for depressive symptoms. A: anterior, P: posterior, S: superior, In: inferior, I: hemisphere associated with intact hand, M: hemisphere associated with missing hand.

  • Fig. 2 Mapping of radial diffusivity (RD) correlates by phantom limb pain severity in the patient group. The distribution of white matter structures in which RD values were positively correlated with visual analogue scale scores in patients with phantom limb pain, when the Hamilton depression rating scale scores were included as a nuisance covariate. A: anterior, P: posterior, S: superior, In: inferior, I: hemisphere associated with intact hand, M: hemisphere associated with missing hand.


Reference

1. Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol. 2016; 141:45–60. DOI: 10.1016/j.pneurobio.2016.04.005. PMID: 27090751. PMCID: PMC5677601.
Article
2. Villain N, Fouquet M, Baron JC, Mézenge F, Landeau B, de La Sayette V, et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain. 2010; 133:3301–14. DOI: 10.1093/brain/awq203. PMID: 20688814. PMCID: PMC3291528.
Article
3. Manning KY, Schranz A, Bartha R, Dekaban GA, Barreira C, Brown A, et al. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology. 2017; 89:2157–66. DOI: 10.1212/WNL.0000000000004669. PMID: 29070666. PMCID: PMC5696642.
Article
4. Arvanitakis Z, Fleischman DA, Arfanakis K, Leurgans SE, Barnes LL, Bennett DA. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment. Brain Struct Funct. 2016; 221:2135–46. DOI: 10.1007/s00429-015-1034-7. PMID: 25833685. PMCID: PMC4592368.
Article
5. Willoch F, Rosen G, Tölle TR, Oye I, Wester HJ, Berner N, et al. Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann Neurol. 2000; 48:842–9. DOI: 10.1002/1531-8249(200012)48:6<842::AID-ANA4>3.0.CO;2-T. PMID: 11117540.
Article
6. Draganski B, Moser T, Lummel N, Gänssbauer S, Bogdahn U, Haas F, et al. Decrease of thalamic gray matter following limb amputation. Neuroimage. 2006; 31:951–7. DOI: 10.1016/j.neuroimage.2006.01.018. PMID: 16520065.
Article
7. Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother. 2008; 8:809–18. DOI: 10.1586/14737175.8.5.809. PMID: 18457537.
Article
8. May A. Chronic pain may change the structure of the brain. Pain. 2008; 137:7–15. DOI: 10.1016/j.pain.2008.02.034. PMID: 18410991.
Article
9. Makin TR, Scholz J, Henderson Slater D, Johansen-Berg H, Tracey I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain. 2015; 138(Pt 8):2140–6. DOI: 10.1093/brain/awv161. PMID: 26072517. PMCID: PMC4511862.
Article
10. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005; 6:533–44. DOI: 10.1038/nrn1704. PMID: 15995724. PMCID: PMC2659949.
Article
11. Seo CH, Park CH, Jung MH, Jang S, Joo SY, Kang Y, et al. Preliminary investigation of pain-related changes in cerebral blood volume in patients with phantom limb pain. Arch Phys Med Rehabil. 2017; 98:2206–12. DOI: 10.1016/j.apmr.2017.03.010. PMID: 28392326.
Article
12. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008; 34:51–61. DOI: 10.1007/s12031-007-0029-0. PMID: 18157658.
Article
13. Neil JJ. Diffusion imaging concepts for clinicians. J Magn Reson Imaging. 2008; 27:1–7. DOI: 10.1002/jmri.21087. PMID: 18050325.
Article
14. Yi JS, Bae SO, Ahn YM, Park DB, Noh KS, Shin HK, et al. Validity and reliability of the Korean Version of the Hamilton Depression Rating Scale (K-HDRS). J Korean Neuropsychiatr Assoc. 2005; 44:456–65.
15. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006; 31:1487–505. DOI: 10.1016/j.neuroimage.2006.02.024. PMID: 16624579.
Article
16. Kieseppä T, Eerola M, Mäntylä R, Neuvonen T, Poutanen VP, Luoma K, et al. Major depressive disorder and white matter abnormalities: a diffusion tensor imaging study with tract-based spatial statistics. J Affect Disord. 2010; 120:240–4. DOI: 10.1016/j.jad.2009.04.023. PMID: 19467559.
Article
17. Lindsay PG, Wyckoff M. The depression-pain syndrome and its response to antidepressants. Psychosomatics. 1981; 22:571–3. 576–7. DOI: 10.1016/S0033-3182(81)73478-9. PMID: 7267947.
Article
18. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014; 92:381–97. DOI: 10.1016/j.neuroimage.2014.01.060. PMID: 24530839. PMCID: PMC4010955.
Article
19. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009; 44:83–98. DOI: 10.1016/j.neuroimage.2008.03.061. PMID: 18501637.
Article
20. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003; 20:1714–22. DOI: 10.1016/j.neuroimage.2003.07.005. PMID: 14642481.
Article
21. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007; 4:316–29. DOI: 10.1016/j.nurt.2007.05.011. PMID: 17599699. PMCID: PMC2041910.
Article
22. Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci. 2007; 27:11869–76. DOI: 10.1523/JNEUROSCI.3647-07.2007. PMID: 17978027. PMCID: PMC2562788.
Article
23. Budde MD, Janes L, Gold E, Turtzo LC, Frank JA. The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain. 2011; 134(Pt 8):2248–60. DOI: 10.1093/brain/awr161. PMID: 21764818. PMCID: PMC3155707.
Article
24. Kumar R, Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM. Brain axonal and myelin evaluation in heart failure. J Neurol Sci. 2011; 307:106–13. DOI: 10.1016/j.jns.2011.04.028. PMID: 21612797. PMCID: PMC3150745.
Article
25. Harrison DM, Shiee N, Bazin PL, Newsome SD, Ratchford JN, Pham D, et al. Tract-specific quantitative MRI better correlates with disability than conventional MRI in multiple sclerosis. J Neurol. 2013; 260:397–406. DOI: 10.1007/s00415-012-6638-8. PMID: 22886062. PMCID: PMC3753185.
Article
26. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology. 2011; 53:367–72. DOI: 10.1007/s00234-010-0807-1. PMID: 21128070.
Article
27. Weaver KE, Richards TL, Liang O, Laurino MY, Samii A, Aylward EH. Longitudinal diffusion tensor imaging in Huntington’s disease. Exp Neurol. 2009; 216:525–9. DOI: 10.1016/j.expneurol.2008.12.026. PMID: 19320010.
Article
28. Cosottini M, Giannelli M, Siciliano G, Lazzarotti G, Michelassi MC, Del Corona A, et al. Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and pro-gressive muscular atrophy. Radiology. 2005; 237:258–64. DOI: 10.1148/radiol.2371041506. PMID: 16183935.
Article
29. Sullivan EV, Rohlfing T, Pfefferbaum A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol Aging. 2010; 31:464–81. DOI: 10.1016/j.neurobiolaging.2008.04.007. PMID: 18495300. PMCID: PMC2815144.
Article
30. Della Nave R, Ginestroni A, Tessa C, Giannelli M, Piacentini S, Filippi M, et al. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am J Neuroradiol. 2010; 31:1675–81. DOI: 10.3174/ajnr.A2128. PMID: 20488902.
Article
31. Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, et al. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage. 2010; 49:2995–3004. DOI: 10.1016/j.neuroimage.2009.10.015. PMID: 19850138. PMCID: PMC3725957.
Article
32. Acosta-Cabronero J, Williams GB, Pengas G, Nestor PJ. Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain. 2010; 133(Pt 2):529–39. DOI: 10.1093/brain/awp257. PMID: 19914928.
Article
33. Salat DH, Tuch DS, van der Kouwe AJ, Greve DN, Pappu V, Lee SY, et al. White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging. 2010; 31:244–56. DOI: 10.1016/j.neurobiolaging.2008.03.013. PMID: 18455835. PMCID: PMC3038572.
Article
34. Zhu T, Zhong J, Hu R, Tivarus M, Ekholm S, Harezlak J, et al. Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirol. 2013; 19:10–23. DOI: 10.1007/s13365-012-0135-9. PMID: 23179680. PMCID: PMC3568248.
Article
35. Rayhan RU, Stevens BW, Timbol CR, Adewuyi O, Walitt B, VanMeter JW, et al. Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War illness. PLoS One. 2013; 8:e58493. DOI: 10.1371/journal.pone.0058493. PMID: 23526988. PMCID: PMC3603990.
Article
36. Li Z, Li C, Fan L, Jiang G, Wu J, Jiang T, et al. Altered microstructure rather than morphology in the corpus callosum after lower limb amputation. Sci Rep. 2017; 7:44780. DOI: 10.1038/srep44780. PMID: 28303959. PMCID: PMC5355997.
Article
37. Simões EL, Bramati I, Rodrigues E, Franzoi A, Moll J, Lent R, et al. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees. J Neurosci. 2012; 32:3211–20. DOI: 10.1523/JNEUROSCI.4592-11.2012. PMID: 22378892. PMCID: PMC6622024.
Article
38. Jiang G, Yin X, Li C, Li L, Zhao L, Evans AC, et al. The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast. 2015; 2015:823185. DOI: 10.1155/2015/823185. PMID: 26587289. PMCID: PMC4637496.
Article
39. Moulin DE. Pain in central and peripheral demyelinating disorders. Neurol Clin. 1998; 16:889–98. DOI: 10.1016/S0733-8619(05)70103-1. PMID: 9767068.
Article
40. Love S, Hilton DA, Coakham HB. Central demyelination of the Vth nerve root in trigeminal neuralgia associated with vascular compression. Brain Pathol. 1998; 8:1–11. DOI: 10.1111/j.1750-3639.1998.tb00126.x. PMID: 9458161.
Article
41. Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS, et al. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain. 2013; 154:1528–41. DOI: 10.1016/j.pain.2013.04.010. PMID: 23721972. PMCID: PMC3758125.
Article
42. Lutz J, Jäger L, de Quervain D, Krauseneck T, Padberg F, Wichnalek M, et al. White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis Rheum. 2008; 58:3960–9. DOI: 10.1002/art.24070. PMID: 19035484.
Article
43. Sundgren PC, Petrou M, Harris RE, Fan X, Foerster B, Mehrotra N, et al. Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: a prospective study of whole brain diffusivity, apparent diffusion coefficient, and fraction anisotropy in different regions of the brain and correlation with symptom severity. Acad Radiol. 2007; 14:839–46. DOI: 10.1016/j.acra.2007.03.015. PMID: 17574134.
Article
44. Gallagher R. Opioid-induced neurotoxicity. Can Fam Physician. 2007; 53:426–7. PMID: 17872676. PMCID: PMC1949075.
45. Ohn SH, Chang WH, Park CH, Kim ST, Lee JI, Pascual-Leone A, et al. Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke. Neurorehabil Neural Repair. 2012; 26:344–52. DOI: 10.1177/1545968311423110. PMID: 21980153. PMCID: PMC3541021.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr