Transl Clin Pharmacol.  2019 Jun;27(2):59-63. 10.12793/tcp.2019.27.2.59.

A review of computational drug repurposing

Affiliations
  • 1Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea. kspark@yuhs.ac

Abstract

Although sciences and technology have progressed rapidly, de novo drug development has been a costly and time-consuming process over the past decades. In view of these circumstances, "˜drug repurposing' (or "˜drug repositioning') has appeared as an alternative tool to accelerate drug development process by seeking new indications for already approved drugs rather than discovering de novo drug compounds, nowadays accounting for 30% of newly marked drugs in the U.S. In the meantime, the explosive and large-scale growth of molecular, genomic and phenotypic data of pharmacological compounds is enabling the development of new area of drug repurposing called computational drug repurposing. This review provides an overview of recent progress in the area of computational drug repurposing. First, it summarizes available repositioning strategies, followed by computational methods commonly used. Then, it describes validation techniques for repurposing studies. Finally, it concludes by discussing the remaining challenges in computational repurposing.

Keyword

Computational drug repurposing; Deep learning; Drug repositioning; Machine learning; Text mining

MeSH Terms

Data Mining
Drug Repositioning*
Machine Learning

Figure

  • Figure 1 Conceptual diagram of de novo drug development and drug repurposing; the arrow denotes the initiation time in each scenario and the number denotes a period of time in years. In this figure, the objective of drug repurposing was assumed to be to identify or discover new targets for a drug marketed. Note that drug repurposing begins with target discovery for an existing drug, directly followed by phase 2 and 3 clinical trials, while animal and phase 1 clinical studies were not conducted as results for these studies are already available for an existing drug.


Reference

1. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012; 11:191–200. DOI: 10.1038/nrd3681.
Article
2. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013; 12:581–594. DOI: 10.1038/nrd4051.
Article
3. Booth B, Zemmel R. Opinion/Outlook: Prospects for productivity. Nat Rev Drug Discov. 2004; 3:451–456.
4. Kato S, Moulder SL, Ueno NT, Wheler JJ, Meric-Bernstam F, Kurzrock R, et al. Challenges and perspective of drug repurposing strategies in early phase clinical trials. Oncoscience. 2015; 2:576–580.
Article
5. Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform. 2011; 12:346–356. DOI: 10.1093/bib/bbr021.
Article
6. Munos BH, Chin WW. How to revive breakthrough innovation in the pharmaceutical industry. Sci Transl Med. 2011; 3:89cm16. DOI: 10.1126/scitranslmed.3002273.
Article
7. Novac N. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci. 2013; 34:267–272. DOI: 10.1016/j.tips.2013.03.004.
Article
8. Shim JS, Liu JO. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci. 2014; 10:654–663. DOI: 10.7150/ijbs.9224.
Article
9. Liu Z, Fang H, Reagan K, Xu X, Mendrick DL, Slikker W Jr, et al. In silico drug repositioning: What we need to know. Drug Discov Today. 2013; 18:110–115. DOI: 10.1016/j.drudis.2012.08.005.
10. Jin G, Wong ST. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 2014; 19:637–644. DOI: 10.1016/j.drudis.2013.11.005.
Article
11. Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016; 8:186–210. DOI: 10.1002/wsbm.1337.
12. Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, et al. Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach. PLoS ONE. 2013; 8:e60618. DOI: 10.1371/journal.pone.0060618.
Article
13. Swamidass SJ. Mining small-molecule screens to repurpose drugs. Brief Bioinform. 2011; 12:327–335. DOI: 10.1093/bib/bbr028.
Article
14. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem. 2002; 45:2213–2221.
Article
15. Jadamba E, Shin M. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. BioMed Res Int. 2016; 2016:7147039. DOI: 10.1155/2016/7147039.
Article
16. Jin G, Fu C, Zhao H, Cui K, Chang J, Wong ST. A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res. 2012; 72:33–44. DOI: 10.1158/0008-5472.CAN-11-2333.
Article
17. Haeberle H, Dudley JT, Liu JT, Butte AJ, Contag CH. Identification of cell surface targets through meta-analysis of microarray data. Neoplasia. 2012; 14:666–669.
Article
18. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, et al. NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res. 2005; 33:D562–D566.
Article
19. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313:1929–1935.
Article
20. Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med. 2011; 3:96ra76. DOI: 10.1126/scitranslmed.3002648.
Article
21. Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology. 2014; 141:157–165. DOI: 10.1111/imm.12195.
Article
22. Luo Y, Thompson WK, Herr TM, Zeng Z, Berendsen MA, Jonnalagadda SR, et al. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf. 2017; 40:1075–1089. DOI: 10.1007/s40264-017-0558-6.
Article
23. Xu H, Aldrich MC, Chen Q, Liu H, Peterson NB, Dai Q, et al. Validating drug repurposing signals using electronic health records: A case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc. 2015; 22:179–191. DOI: 10.1136/amiajnl-2014-002649.
Article
24. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol. 2011; 7:496. DOI: 10.1038/msb.2011.26.
Article
25. Liu Z, Guo F, Gu J, Wang Y, Li Y, Wang D, et al. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources. Bioinformatics. 2015; 31:1788–1795. DOI: 10.1093/bioinformatics/btv055.
Article
26. Napolitano F, Zhao Y, Moreira VM, Tagliaferri R, Kere J, D'Amato M, et al. Drug repositioning: a machine-learning approach through data integration. J Cheminform. 2013; 5:30. DOI: 10.1186/1758-2946-5-30.
Article
27. Wang Y, Chen S, Deng N, Wang Y. Drug repositioning by kernel based integration of molecular structure, molecular activity, and phenotype data. PLoS One. 2013; 8:e78518. DOI: 10.1371/journal.pone.0078518.
Article
28. Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One. 2013; 8:e61318. DOI: 10.1371/journal.pone.0061318.
Article
29. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436–444.
Article
30. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016; 13:2524–2530. DOI: 10.1021/acs.molpharmaceut.6b00248.
Article
31. Unterthiner T, Mayr A, Klambauer G, Hochreiter S. Toxicity Prediction using Deep Learning. Front Environ Sci. 2015; 3:10.
32. Azuaje F. Drug interaction networks: An introduction to translational and clinical applications. Cardiovasc Res. 2013; 97:631–641. DOI: 10.1093/cvr/cvs289.
Article
33. Iorio F, Rittman T, Ge H, Menden M, Saez-Rodriguez J. Transcriptional data: a new gateway to drug repositioning? Drug Discov Today. 2013; 18:350–357. DOI: 10.1016/j.drudis.2012.07.014.
Article
34. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012; 8:e1002503. DOI: 10.1371/journal.pcbi.1002503.
Article
35. Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol. 2013; 7 Suppl 5:S6. DOI: 10.1186/1752-0509-7-S5-S6.
Article
36. Tari LB, Patel JH. Systematic drug repurposing through text mining. Methods Mol Biol. 2014; 1159:253–267. DOI: 10.1007/978-1-4939-0709-0_14.
Article
37. Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform. 2011; 12:357–368. DOI: 10.1093/bib/bbr005.
Article
38. Bisgin H, Liu Z, Fang H, Kelly R, Xu X, Tong W. A phenome-guided drug repositioning through a latent variable model. BMC Bioinformatics. 2014; 15:267.
Article
39. Zhu Q, Tao C, Shen F, Chute CG. Exploring the pharmacogenomics knowledge base (PharmGKB) for repositioning breast cancer drugs by leveraging Web ontology language (OWL) and cheminformatics approaches. Pac Symp Biocomput. 2014; 172–182.
Article
40. Chen B, Ding Y, Wild DJ. Assessing drug target association using semantic linked data. PLoS Comput Biol. 2012; 8:e1002574. DOI: 10.1371/journal.pcbi.1002574.
Article
41. Guney E, Menche J, Vidal M, Barábasi AL. Network-based in silico drug efficacy screening. Nat Commun. 2016; 7:10331. DOI: 10.1038/ncomms10331.
Article
42. Alaimo S, Giugno R, Pulvirenti A. Recommendation techniques for drug–target interaction prediction and drug repositioning. Methods Mol Biol. 2016; 1415:441–462. DOI: 10.1007/978-1-4939-3572-7_23.
Article
43. Mei JP, Kwoh CK, Yang P, Li XL, Zheng J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics. 2013; 29:238–245. DOI: 10.1093/bioinformatics/bts670.
Article
44. Khatri P, Roedder S, Kimura N, De Vusser K, Morgan AA, Gong Y, et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med. 2013; 210:2205–2221. DOI: 10.1084/jem.20122709.
Article
45. Li YY, Jones SJ. Drug repositioning for personalized medicine. Genome Med. 2012; 4:27. DOI: 10.1186/gm326.
Article
46. Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep learning for drug-induced liver injury. J Chem Inf Model. 2015; 55:2085–2093. DOI: 10.1021/acs.jcim.5b00238.
Article
Full Text Links
  • TCP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr