1. Einthoven W. Un nouveau galvanomètre. Archives néerlandaises des sciences exactes et naturelles, série II, Vol. VI. Harlem: Soc Holl des Sciences;1901. p. 625–633.
2. Forssmann W. Die sondierung des rechten Herzens [Probing of the right heart]. Klin Wochenschr. 1929; 8:2085–2087.
3. Cournand A, Ranges HA. Catheterization of the right auricle in man. Proc Soc Exp Biol Med. 1941; 46:462–466.
Article
4. Cournand A, Riley RL, Breed ES, Baldwin ED, Richards DW, Lester MS, Jones M. Measurement of cardiac output in man using the technique of catheterization of the right auricle or ventricle. J Clin Invest. 1945; 24:106–116.
Article
5. Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Kungl Fysiografiska Sällskapets i Lund Förhandlingar. 1954; 24:40–58.
Article
6. McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, Sekhon M, Wylie K, Mardis ER, Wilson RK, Fulton R, Kucaba TA, Wagner-McPherson C, Barbazuk WB, Gregory SG, Humphray SJ, French L, Evans RS, Bethel G, Whittaker A, et al. A physical map of the human genome. Nature. 2001; 409:934–941.
7. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998; 19:1853–1861.
Article
8. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995; 270:467–470.
Article
9. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 2000; 18:630–634.
Article
10. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008; 455:1054–1056.
11. Noble D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature. 1960; 188:495–497.
Article
12. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117:500–544.
Article
13. Noble D. The rise of computational biology. Nat Rev Mol Cell Biol. 2002; 3:459–463.
Article
14. Kitano H. Computational systems biology. Nature. 2002; 420:206–210.
Article
15. Hunter PJ, Borg TK. Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol. 2003; 4:237–243.
Article
16. Lee KE, Kim KT, Lee JH, Jung S, Kim JH, Shim EB. Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model. Korean J Physiol Pharmacol. 2019; 23:63–70.
Article
17. Okada JI, Yoshinaga T, Kurokawa J, Washio T, Furukawa T, Sawada K, Sugiura S, Hisada T. Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block. Br J Pharmacol. 2018; 175:3435–3452.
Article
18. Newell A, Simon H. The logic theory machine--a complex information processing system. IRE Trans Inf Theory. 1956; 2:61–79.
Article
19. Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med. 2018; 1:5.
Article
20. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25:44–56.
Article
21. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019; 25:30–36.
Article
22. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019; 25:65–69.
Article
23. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019; 25:70–74.
Article
24. Mincholé A, Rodriguez B. Artificial intelligence for the electrocardiogram. Nat Med. 2019; 25:22–23.
Article
25. Tsay D, Patterson C. From machine learning to artificial intelligence applications in cardiac care. Circulation. 2018; 138:2569–2575.
Article
26. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017; 69:2657–2664.
27. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019; 73:1317–1335.
28. Weintraub WS, Fahed AC, Rumsfeld JS. Translational medicine in the era of big data and machine learning. Circ Res. 2018; 123:1202–1204.
Article
29. Rodriguez F, Scheinker D, Harrington RA. Promise and perils of big data and artificial intelligence in clinical medicine and biomedical research. Circ Res. 2018; 123:1282–1284.
Article
30. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, Mc-Clelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017; 121:1092–1101.
31. Okada J, Washio T, Sugiura S, Hisada T. Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart. Korean J Physiol Pharmacol. 2019; 23:295–303.
Article
32. Hwang M, Leem CH, Shim EB. Toward a grey box approach for cardiovascular physiome. Korean J Physiol Pharmacol. 2019; 23:305–310.
Article
33. Shin SY. Current status and future direction of digital health in Korea. Korean J Physiol Pharmacol. 2019; 23:311–315.
Article