Ann Pediatr Endocrinol Metab.  2019 Mar;24(1):15-21. 10.6065/apem.2019.24.1.15.

Screening and management of thyroid dysfunction in preterm infants

Affiliations
  • 1Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea. chyerim@hanmail.net

Abstract

Preterm infants can suffer various thyroid dysfunctions associated with developmental immaturity of the hypothalamic-pituitary-thyroid axis, postnatal illness, medications, or iodine supply. The incidence of thyroid dysfunction among preterm infants is higher than that among term infants and has been increasing with improvement in the survival of preterm infants. Hypothyroxinemia is frequently observed during the first week of life in extreme preterm neonates, and the incidence of delayed thyrotropin elevation is high at the age of 2-6 weeks. Although the necessity of routine rescreening remains controversial, recent guidelines on screening for congenital hypothyroidism have recommended rescreening of all preterm neonates. Thyroid hormone replacement is recommended for persistent thyrotropin elevation with or without hypothyroxinemia. Hypothyroxinemia without thyrotropin elevation does not require treatment, and some potential risks of levothyroxine supplementation have been reported. Although most thyroid dysfunctions are transient, careful follow-up after discontinuation of levothyroxine is considered so as to avoid missing persistent hypothyroidism.

Keyword

Thyroid; Preterm infant; Hypothyroidism; Hypothyroxinemiasequencing; Short stature

MeSH Terms

Congenital Hypothyroidism
Follow-Up Studies
Humans
Hypothyroidism
Incidence
Infant
Infant, Newborn
Infant, Premature*
Iodine
Mass Screening*
Thyroid Gland*
Thyrotropin
Thyroxine
Iodine
Thyrotropin
Thyroxine

Reference

References

1. Dussault JH, Coulombe P, Laberge C, Letarte J, Guyda H, Khoury K. Preliminary report on a mass screening program for neonatal hypothyroidism. J Pediatr. 1975; 86:670–4.
Article
2. DH Lee. The prevalence of pediatric endocrine and metabolic diseases in Korea. Korean J Pediatr. 2008; 51:559–63.
Article
3. Mitchell ML, Hsu HW; Massachusetts Pediatric Endocrine Work Group. Unresolved issues in the wake of newborn screening for congenital hypothyroidism. J Pediatr. 2016; 173:228–31. e1.
Article
4. American Academy of Pediatrics, Rose SR; Section on Endocrinology and Committee on Genetics; American Thyroid Association, Brown RS; Public Health Committee, Lawson Wilkins Pediatric Endocrine Society, Foley T, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics. 2006; 117:2290–303.
Article
5. Léger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. Horm Res Paediatr. 2014; 81:80–103.
Article
6. Mass Screening Committee; Japanese Society for Pediatric Endocrinology; Japanese Society for Mass Screening, Nagasaki K, Minamitani K, Anzo M, et al. Guidelines for mass screening of congenital hypothyroidism (2014 revision). Clin Pediatr Endocrinol. 2015; 24:107–33.
Article
7. Desai MP, Sharma R, Riaz I, Sudhanshu S, Parikh R, Bhatia V. Newborn screening guidelines for congenital hypothyroidism in India: recommendations of the Indian Society for Pediatric and Adolescent Endocrinology (ISPAE) - Part I: Screening and Confirmation of Diagnosis. Indian J Pediatr. 2018; 85:440–7.
Article
8. Uhrmann S, Marks KH, Maisels MJ, Friedman Z, Murray F, Kulin HE, et al. Thyroid function in the preterm infant: a longitudinal assessment. J Pediatr. 1978; 92:968–73.
Article
9. Hillman NH, Kallapur SG, Jobe AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. 2012; 39:769–83.
Article
10. Fisher DA. Thyroid system immaturities in very low birth weight premature infants. Semin Perinatol. 2008; 32:387–97.
Article
11. Mandel SJ, Hermos RJ, Larson CA, Prigozhin AB, Rojas DA, Mitchell ML. Atypical hypothyroidism and the very low birthweight infant. Thyroid. 2000; 10:693–5.
Article
12. Scratch SE, Hunt RW, Thompson DK, Ahmadzai ZM, Doyle LW, Inder TE, et al. Free thyroxine levels after very preterm birth and neurodevelopmental outcomes at age 7 years. Pediatrics. 2014; 133:e955–63.
Article
13. Jacobsen BB, Peitersen B, Andersen HJ, Hummer L. Serum concentrations of thyroxine-binding globulin, prealbumin and albumin in healthy fullterm, small-for-gestational age and preterm newborn infants. Acta Paediatr Scand. 1979; 68:49–55.
Article
14. Delahunty C, Falconer S, Hume R, Jackson L, Midgley P, Mirfield M, et al. Levels of neonatal thyroid hormone in preterm infants and neurodevelopmental outcome at 5 1/2 years: millennium cohort study. J Clin Endocrinol Metab. 2010; 95:4898–908.
15. van Wassenaer AG, Kok JH, de Vijlder JJ, Briët JM, Smit BJ, Tamminga P, et al. Effects of thyroxine supplementation on neurologic development in infants born at less than 30 weeks' gestation. N Engl J Med. 1997; 336:21–6.
Article
16. Briët JM, van Wassenaer AG, Dekker FW, de Vijlder JJ, van Baar A, Kok JH. Neonatal thyroxine supplementation in very preterm children: developmental outcome evaluated at early school age. Pediatrics. 2001; 107:712–8.
Article
17. van Wassenaer AG, Westera J, Houtzager BA, Kok JH. Tenyear follow-up of children born at <30 weeks' gestational age supplemented with thyroxine in the neonatal period in a randomized, controlled trial. Pediatrics. 2005; 116:e613–8.
18. van Wassenaer-Leemhuis A, Ares S, Golombek S, Kok J, Paneth N, Kase J, et al. Thyroid hormone supplementation in preterm infants born before 28 weeks gestational age and neurodevelopmental outcome at age 36 months. Thyroid. 2014; 24:1162–9.
Article
19. Iijima S. Current knowledge of transient hypothyroxinemia of prematurity: to treat or not to treat? J Matern Fetal Neonatal Med. 2018; Feb. 22. 1-7.
Article
20. Yamamoto A, Kawai M, Iwanaga K, Matsukura T, Niwa F, Hasegawa T, et al. Response to thyrotropin-releasing hormone stimulation tests in preterm infants with transient hypothyroxinemia of prematurity. J Perinatol. 2015; 35:725–8.
Article
21. Larson C, Hermos R, Delaney A, Daley D, Mitchell M. Risk factors associated with delayed thyrotropin elevations in congenital hypothyroidism. J Pediatr. 2003; 143:587–91.
Article
22. Cavarzere P, Camilot M, Popa FI, Lauriola S, Teofoli F, Gaudino R, et al. Congenital hypothyroidism with delayed TSH elevation in low-birth-weight infants: incidence, diagnosis and management. Eur J Endocrinol. 2016; 175:395–402.
Article
23. Chung HR, Shin CH, Yang SW, Choi CW, Kim BI, Kim EK, et al. High incidence of thyroid dysfunction in preterm infants. J Korean Med Sci. 2009; 24:627–31.
Article
24. Lee JH, Kim SW, Jeon GW, Sin JB. Thyroid dysfunction in very low birth weight preterm infants. Korean J Pediatr. 2015; 58:224–9.
Article
25. Woo HC, Lizarda A, Tucker R, Mitchell ML, Vohr B, Oh W, et al. Congenital hypothyroidism with a delayed thyroidstimulating hormone elevation in very premature infants: incidence and growth and developmental outcomes. J Pediatr. 2011; 158:538–42.
Article
26. Hollanders JJ, Israëls J, van der Pal SM, Verkerk PH, Rotteveel J, Finken MJ, et al. No association between transient hypothyroxinemia of prematurity and neurodevelopmental outcome in young adulthood. J Clin Endocrinol Metab. 2015; 100:4648–53.
Article
27. Williams FL, Simpson J, Delahunty C, Ogston SA, Bongers-Schokking JJ, Murphy N, et al. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J Clin Endocrinol Metab. 2004; 89:5314–20.
Article
28. Kester MH, Martinez de Mena R, Obregon MJ, Marinkovic D, Howatson A, Visser TJ, et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab. 2004; 89:3117–28.
Article
29. Fisher DA. Physiological variations in thyroid hormones: physiological and pathophysiological considerations. Clin Chem. 1996; 42:135–9.
Article
30. Ares S, Pastor I, Quero J, Morreale de Escobar G. Thyroid gland volume as measured by ultrasonography in preterm infants. Acta Paediatr. 1995; 84:58–62.
Article
31. Zung A, Bier Palmon R, Golan A, Troitzky M, Eventov-Friedman S, Marom R, et al. Risk factors for the development of delayed TSH elevation in neonatal intensive care unit newborns. J Clin Endocrinol Metab. 2017; 102:3050–5.
Article
32. Delange F. Optimal iodine nutrition during pregnancy, lactation and the neonatal period. Int J Endocrinol Metab. 2004; 2:1–12.
33. Delange F. Iodine requirements during pregnancy, lactation and the neonatal period and indicators of optimal iodine nutrition. Public Health Nutr. 2007; 10(12A):1571–80.
Article
34. Ares S, Escobar-Morreale HF, Quero J, Durán S, Presas MJ, Herruzo R, et al. Neonatal hypothyroxinemia: effects of iodine intake and premature birth. J Clin Endocrinol Metab. 1997; 82:1704–12.
Article
35. Ibrahim M, de Escobar GM, Visser TJ, Durán S, van Toor H, Strachan J, et al. Iodine deficiency associated with parenteral nutrition in extreme preterm infants. Arch Dis Child Fetal Neonatal Ed. 2003; 88:F56–7.
Article
36. Linder N, Davidovitch N, Reichman B, Kuint J, Lubin D, Meyerovitch J, et al. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J Pediatr. 1997; 131:434–9.
Article
37. Smith VC, Svoren BM, Wolfsdorf JI. Hypothyroidism in a breast-fed preterm infant resulting from maternal topical iodine exposure. J Pediatr. 2006; 149:566–7.
Article
38. Chung HR, Shin CH, Yang SW, Choi CW, Kim BI. Subclinical hypothyroidism in Korean preterm infants associated with high levels of iodine in breast milk. J Clin Endocrinol Metab. 2009; 94:4444–7.
Article
39. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM. Williams textbook of endocrinology. 13th ed. Philadelphia (PA): Saunders Elsevier;2015. p. 334–5.
40. Moon S, Kim J. Iodine content of human milk and dietary iodine intake of Korean lactating mothers. Int J Food Sci Nutr. 1999; 50:165–71.
Article
41. Aitken J, Williams FL. A systematic review of thyroid dysfunction in preterm neonates exposed to topical iodine. Arch Dis Child Fetal Neonatal Ed. 2014; 99:F21–8.
Article
42. Ghirri P, Lunardi S, Boldrini A. Iodine supplementation in the newborn. Nutrients. 2014; 6:382–90.
Article
43. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010; 50:85–91.
Article
44. Zimmermann MB, Crill CM. Iodine in enteral and parenteral nutrition. Best Pract Res Clin Endocrinol Metab. 2010; 24:143–58.
Article
45. Greene HL, Hambidge KM, Schanler R, Tsang RC. Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: report of the Subcommittee on Pediatric Parenteral Nutrient Requirements from the Committee on Clinical Practice Issues of the American Society for Clinical Nutrition. Am J Clin Nutr. 1988; 48:1324–42.
Article
46. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R; Parenteral Nutrition Guidelines Working Group, et al. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005; 41 Suppl 2:S1–87.
47. NHS newborn blood spot screening programme. A laboratory guide to newborn screening in the UK for congenital hypothyroidism [Internet]. UK National Screening Committee (Part of Public Health England) publication. 2014 [cited 2019 Jan 14]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/753471/Congenital_hypothyroidism_lab_guide.pdf.
48. Vincent MA, Rodd C, Dussault JH, Van Vliet G. Very low birth weight newborns do not need repeat screening for congenital hypothyroidism. J Pediatr. 2002; 140:311–4.
Article
49. LaFranchi S. Thyroid physiology and screening in preterm infants [Internet]. Uptodate; 2018 [cited 2019 Jan 16]. Available from: https://www.uptodate.com/contents/thyroid-physiology-and-screening-in-preterm-infants.
50. Korada M, Pearce MS, Ward Platt MP, Avis E, Turner S, Wastell H, et al. Repeat testing for congenital hypothyroidism in preterm infants is unnecessary with an appropriate thyroid stimulating hormone threshold. Arch Dis Child Fetal Neonatal Ed. 2008; 93:F286–8.
Article
51. Clark SJ, Deming DD, Emery JR, Adams LM, Carlton EI, Nelson JC. Reference ranges for thyroid function tests in premature infants beyond the first week of life. J Perinatol. 2001; 21:531–6.
Article
52. Yagasaki H, Kobayashi K, Nemoto A, Naito A, Sugita K, Ohyama K. Late-onset circulatory dysfunction after thyroid hormone treatment in an extremely low birth weight infant. J Pediatr Endocrinol Metab. 2010; 23:153–8.
Article
53. Kawai M, Kusuda S, Cho K, Horikawa R, Takizawa F, Ono M, et al. Nationwide surveillance of circulatory collapse associated with levothyroxine administration in very-lowbirthweight infants in Japan. Pediatr Int. 2012; 54:177–81.
Article
54. Shimokaze T, Saito E, Akaba K. Increased incidence of lateonset circulatory collapse after changing clinical practice: a retrospective investigation of causative factors. Am J Perinatol. 2015; 32:1169–76.
Article
55. Lee JA, Choi CW, Kim EK, Kim HS, Kim BI, Choi JH. Lateonset hypotension and late circulatory collapse due to adrenal insufficiency in preterm infants with gestational age less than 32 weeks. J Korean Soc Neonatol. 2011; 18:211–20.
Article
56. Lee WJ, Kim MY, Cho HJ, Lee JS, Son DW. Clinical features of late-onset circulatory collapse in preterm infants. Korean J Perinatol. 2013; 24:148–57.
Article
57. Lim G, Lee YK, Han HS. Early discontinuation of thyroxine therapy is possible in most very low-birthweight infants with hypothyroidism detected by screening. Acta Paediatr. 2014; 103:e123. –9.
Article
58. Jung JM, Jin HY, Chung ML. Feasibility of an early discontinuation of thyroid hormone treatment in very-low-birthweight infants at risk for transient or permanent congenital hypothyroidism. Horm Res Paediatr. 2016; 85:131–9.
59. Vigone MC, Caiulo S, Di Frenna M, Ghirardello S, Corbetta C, Mosca F, et al. Evolution of thyroid function in preterm infants detected by screening for congenital hypothyroidism. J Pediatr. 2014; 164:1296–302.
60. Oh KW, Koo MS, Park HW, Chung ML, Kim MH, Lim G. Establishing a reference range for triiodothyronine levels in preterm infants. Early Hum Dev. 2014; 90:621–4.
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr