Int J Stem Cells.  2019 Mar;12(1):107-113. 10.15283/ijsc18101.

Possibility of Injecting Adipose-Derived Stromal Vascular Fraction Cells to Accelerate Microcirculation in Ischemic Diabetic Feet: A Pilot Study

Affiliations
  • 1Department of Plastic Surgery, Korea University Guro Hospital, Seoul, Korea. pshan@kumc.or.kr

Abstract

BACKGROUND AND OBJECTIVES
Beneficial effects of human adipose-derived stromal vascular fraction (SVF) cell injection on microcirculation have been recently reported in in vitro and in vivo studies. However, no clinical studies have reported its effect in diabetic patients who commonly experience compromised tissue perfusion, regardless of the status of intravascular blood flow. The present piloting study was designed to clinically examine the possibility of SVF cell injection to accelerate microcirculation, particularly in ischemic diabetic feet.
METHODS
Ten diabetic feet were included to receive subcutaneous injection of SVF cells around wounds. Transcutaneous partial oxygen pressure (TcPO2) and cutaneous microvascular blood flow were measured before and every four weeks after cell injection until the 12th week visit.
RESULTS
TcPO2 values increased from 31.3±7.4 before injection to 46.4±8.2 mmHg at 12 weeks after SVF injection (1.5-fold, p<0.05). Cutaneous microvascular blood flow levels increased from 34.0±21.1 before injection to 76.1±32.5 perfusion unit at 12 weeks after SVF injection (2.2-fold, p<0.05). There were no adverse events related to SVF cell injection.
CONCLUSIONS
Results of this study demonstrate that adipose-derived SVF cell injection have the possibility to provide beneficial effects on microcirculation in ischemic diabetic feet.

Keyword

Diabetic foot; Microcirculation; Stromal vascular fraction cell; Tissue oxygenation

MeSH Terms

Diabetic Foot*
Humans
In Vitro Techniques
Injections, Subcutaneous
Microcirculation*
Oxygen
Perfusion
Pilot Projects*
Wounds and Injuries
Oxygen

Figure

  • Fig. 1 SVF cell isolation and injection. (A) The aspirated adipose tissue was prepared and introduced into a processing chamber with a single-use sterile disposable set. (B) SVF cells were collected in a processing canister. (C) SVF cells in the canister were aspirated using a 10-cc syringe immediately prior to injection and (D) injected into subcutaneous layers around the diabetic wound using a 23-gauge needle.

  • Fig. 2 Sequential values of TcPO2 and cutaneous microvascular blood flow (*p<0.05).


Reference

References

1. Söderström MI, Arvela EM, Korhonen M, Halmesmäki KH, Albäck AN, Biancari F, Lepäntalo MJ, Venermo MA. Infrapopliteal percutaneous transluminal angioplasty versus bypass surgery as first-line strategies in critical leg ischemia: a propensity score analysis. Ann Surg. 2010; 252:765–773. DOI: 10.1097/SLA.0b013e3181fc3c73. PMID: 21037432.
Article
2. Kim HR, Han SK, Rha SW, Kim HS, Kim WK. Effect of percutaneous transluminal angioplasty on tissue oxygenation in ischemic diabetic feet. Wound Repair Regen. 2011; 19:19–24. DOI: 10.1111/j.1524-475X.2010.00641.x. PMID: 21134031.
Article
3. Collinson DJ, Donnelly R. Therapeutic angiogenesis in peripheral arterial disease: can biotechnology produce an effective collateral circulation? Eur J Vasc Endovasc Surg. 2004; 28:9–23. DOI: 10.1016/j.ejvs.2004.03.021. PMID: 15177227.
Article
4. Xie B, Luo H, Zhang Y, Wang Q, Zhou C, Xu D. Autologous stem cell therapy in critical limb ischemia: a meta-analysis of randomized controlled trials. Stem Cells Int. 2018; 2018; DOI: 10.1155/2018/7528464. PMID: 29977308. PMCID: 5994285.
Article
5. Samura M, Hosoyama T, Takeuchi Y, Ueno K, Morikage N, Hamano K. Therapeutic strategies for cell-based neovascularization in critical limb ischemia. J Transl Med. 2017; 15:49. DOI: 10.1186/s12967-017-1153-4. PMID: 28235425. PMCID: 5324309.
Article
6. Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise review: using fat to fight disease: a systematic review of nonhomologous adipose-derived stromal/stem cell therapies. Stem Cells. 2018; 36:1311–1328. DOI: 10.1002/stem.2847. PMID: 29761573.
Article
7. Han SK, Chun KW, Gye MS, Kim WK. The effect of human bone marrow stromal cells and dermal fibroblasts on angiogenesis. Plast Reconstr Surg. 2006; 117:829–835. DOI: 10.1097/01.prs.0000201458.80364.31. PMID: 16525273.
Article
8. Macrin D, Joseph JP, Pillai AA, Devi A. Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev. 2017; 13:741–756. DOI: 10.1007/s12015-017-9759-8. PMID: 28812219.
Article
9. Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: a review. World J Stem Cells. 2017; 9:107–117. DOI: 10.4252/wjsc.v9.i8.107. PMID: 28928907. PMCID: 5583529.
Article
10. Cao Y, Gang X, Sun C, Wang G. Mesenchymal stem cells improve healing of diabetic foot ulcer. J Diabetes Res. 2017; Mar. 12. [Epub]. DOI: 10.1155/2017/9328347. PMID: 28386568. PMCID: 5366201.
Article
11. Zhang Y, Cai J, Zhou T, Yao Y, Dong Z, Lu F. Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg. 2018; DOI: 10.1097/PRS.0000000000004312. PMID: 29334574.
Article
12. Zakhari JS, Zabonick J, Gettler B, Williams SK. Vasculogenic and angiogenic potential of adipose stromal vascular fraction cell populations in vitro. In Vitro Cell Dev Biol Anim. 2018; 54:32–40. DOI: 10.1007/s11626-017-0213-7. PMID: 29197029. PMCID: 5760587.
Article
13. Jin E, Chae DS, Son M, Kim SW. Angiogenic characteristics of human stromal vascular fraction in ischemic hindlimb. Int J Cardiol. 2017; 234:38–47. DOI: 10.1016/j.ijcard.2017.02.080. PMID: 28258850.
Article
14. Wang WZ. Microcirculatory response in vivo on local intraarterial infusion of autogenic adipose-derived stem cells or stromal vascular fraction. Plast Reconstr Surg Glob Open. 2016; DOI: 10.1007/978-3-319-18035-9.
Article
15. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013; 15:641–648. DOI: 10.1016/j.jcyt.2013.02.006. PMID: 23570660. PMCID: 3979435.
Article
16. Lee JM, Moon KC, Han SK, Jeong SH, Kim WK. What tissue is formed after graft of adipose-derived stromal vascular fraction cells? J Craniofac Surg. 2013; 24:636–639. DOI: 10.1097/SCS.0b013e318272dae9. PMID: 23524764.
Article
17. Costa M, Cerqueira MT, Santos TC, Sampaio-Marques B, Ludovico P, Marques AP, Pirraco RP, Reis RL. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomater. 2017; 55:131–143. DOI: 10.1016/j.actbio.2017.03.034. PMID: 28347862.
Article
18. Lowry D, Saeed M, Narendran P, Tiwari A. The difference between the healing and the nonhealing diabetic foot ulcer: a review of the role of the microcirculation. J Diabetes Sci Technol. 2017; 11:914–923. DOI: 10.1177/1932296816658054. PMID: 27390224. PMCID: 5950979.
Article
19. Lee YN, Kim HS, Kang JA, Han SK. Can macrocirculation changes predict nonhealing diabetic foot ulcers? J Wound Ostomy Continence Nurs. 2014; 41:430–435. DOI: 10.1097/WON.0000000000000060. PMID: 25188799.
Article
20. Mayrovitz HN, Larsen PB. Functional microcirculatory impairment: a possible source of reduced skin oxygen tension in human diabetes mellitus. Microvasc Res. 1996; 52:115–126. DOI: 10.1006/mvre.1996.0048. PMID: 8901441.
Article
21. Eleftheriadou I, Tentolouris A, Grigoropoulou P, Tsilingiris D, Anastasiou I, Kokkinos A, Perrea D, Katsilambros N, Tentolouris N. The association of diabetic microvascular and macrovascular disease with cutaneous circulation in patients with type 2 diabetes mellitus. J Diabetes Complications. 2019; 33:165–170. DOI: 10.1016/j.jdiacomp.2018.10.008. PMID: 30446479.
Article
22. Klonizakis M, Manning G, Lingam K, Donnelly R, Yeung JM. Effect of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication. Clin Hemorheol Microcirc. 2015; 61:439–444. DOI: 10.3233/CH-141907. PMID: 25335813.
Article
23. Pan X, You C, Chen G, Shao H, Han C, Zhi L. Skin perfusion pressure for the prediction of wound healing in critical limb ischemia: a meta-analysis. Arch Med Sci. 2018; 14:481–487. DOI: 10.5114/aoms.2016.62220. PMID: 29765431. PMCID: 5949913.
Article
24. Ballard JL, Eke CC, Bunt TJ, Killeen JD. A prospective evaluation of transcutaneous oxygen measurements in the management of diabetic foot problems. J Vasc Surg. 1995; 22:485–490. discussion 490–492. DOI: 10.1016/S0741-5214(95)70018-8. PMID: 7563410.
Article
25. Moon KC, Lee JS, Han SK, Lee HW, Dhong ES. Effects of human umbilical cord blood-derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing. Cytotherapy. 2017; 19:821–828. DOI: 10.1016/j.jcyt.2017.03.074. PMID: 28462822.
Article
26. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003; 11( Suppl 1):S1–28. DOI: 10.1046/j.1524-475X.11.s2.1.x. PMID: 12654015.
Article
27. Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, Capuozzo V, Barbarisi M, Rosso F, Giordano G, Iovino F, Barbarisi A. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013; 185:36–44. DOI: 10.1016/j.jss.2013.05.024. PMID: 23773718.
Article
28. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012; 76:1750–1760. DOI: 10.1253/circj.CJ-11-1135. PMID: 22498564.
Article
29. Argibay B, Trekker J, Himmelreich U, Beiras A, Topete A, Taboada P, Pérez-Mato M, Vieites-Prado A, Iglesias-Rey R, Rivas J, Planas AM, Sobrino T, Castillo J, Campos F. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep. 2017; DOI: 10.1038/srep40758. PMID: 28091591. PMCID: 5238501.
Article
30. Carstens MH, Gómez A, Cortés R, Turner E, Pérez C, Ocon M, Correa D. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res. 2017; 18:14–21. DOI: 10.1016/j.scr.2016.12.001. PMID: 27984756.
Article
31. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, Johnstone BH, Ingram DA, March KL. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res. 2009; 104:1410–1420. DOI: 10.1161/CIRCRESAHA.108.190926. PMID: 19443841.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr