1.Guadagnolo BA., Zagars GK., Araujo D., Ravi V., Shellenberg-er TD., Sturgis EM. Outcomes after definitive treatment for cutaneous angiosarcoma of the face and scalp. Head Neck. 2011. 33(5):661–67.
Article
2.Mellenberg DE., Schoeppel SL. Total scalp treatment of mycosis fungoides: the 4× 4 technique. Int J Radiat Oncol Biol Phys. 1993. 27(4):953–58.
3.Stelzer KJ., Griffin TW. A randomized prospective trial of radiation therapy for AIDS-associated Kaposi's sarcoma. Int J Radiat Oncol Biol Phys. 1993. 27(5):1057–61.
Article
4.Katayama S., Haefner MF., Mohr A, et al. Accelerated tomotherapy delivery with TomoEdge technique. J Appl Clin Med Phys. 2015. 16(2):33–42.
Article
5.Sterzing F., Uhl M., Hauswald H, et al. Dynamic jaws and dynamic couch in helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010. 76(4):1266–73.
Article
6.Lee E., Park K., Kim JS., Kim YB., Lee H. Practical Implementation of Patient-Specific Quality Assurance for Small and Multiple Brain Tumors in CyberKnife with Fixed Collimators. Prog Med Phys. 2018. 29(2):53–8.
Article
7.Dieterich S., Cavedon C., Chuang CF, et al. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011. 38(6):2914–36.
Article
8.Yoon J., Park K., Kim JS., Kim YB., Lee H. Acceptance Testing and Commissioning of Robotic Intensity-Modulated Radiation Therapy M6 System Equipped with InCiseTM 2 Multileaf Collimator. Prog Med Phys. 2018. 29(1):8–15.
9.Jursinic PA. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose. Med Phys. 2010. 37(1):132–40.
Article
10.Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007. 34(12):4594–604.
Article
11.Kim J., Park K., Yoon J, et al. Feasibility Study of a Custom-made Film for End-to-End Quality Assurance Test of Robotic Intensity Modulated Radiation Therapy System. Prog Med Phys. 2016. 27(4):189–95.
Article
12.Sterpin E., Salvat F., Olivera G., Vynckier S. Monte Carlo evaluation of the convolution/superposition algorithm of Hi–ArtTM tomotherapy in heterogeneous phantoms and clinical cases. Med Phys. 2009. 36(5):1566–75.
13.Okoye CC., Patel RB., Hasan S, et al. Comparison of ray tracing and Monte Carlo calculation algorithms for thoracic spine lesions treated with CyberKnife-based stereotactic body radiation therapy. Technol Cancer Res Treat. 2016. 15(1):196–202.
Article
14.Yoon J., Lee E., Park K., Kim JS., Kim YB., Lee H. Patient-Specific Quality Assurance in a Multileaf Collimator-Based CyberKnife System Using the Planar Ion Chamber Array. Prog Med Phys. 2018. 29(2):59–65.
Article
15.Mcguinness C., Descovich M., Barani I. CyberKnife image-guided hypofractionated stereotactic radiotherapy. Image-Guided Hypofractionated Stereotactic Radiosurgery: A Practical Approach to Guide Treatment of Brain and Spine Tumors: CRC Press, Taylor and Francis Group. 2016. 49.
Article
16.Kang KM., Jeong BK., Choi HS, et al. Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife. J Appl Clin Med Phys. 2015. 16(5):193–204.
Article