Epidemiol Health.  2018;40:e2018061. 10.4178/epih.e2018061.

Population data science: advancing the safe use of population data for public benefit

Affiliations
  • 1Swansea University Medical School, Swansea, United Kingdom. k.h.jones@swansea.ac.uk

Abstract

The value of using population data to answer important questions for individual and societal benefit has never been greater. Governments and research funders world-wide are recognizing this potential and making major investments in data-intensive initiatives. However, there are challenges to overcome so that safe, socially-acceptable data sharing can be achieved. This paper outlines the field of population data science, the International Population Data Linkage Network (IPDLN), and their roles in advancing data-intensive research. We provide an overview of core concepts and major challenges for data-intensive research, with a particular focus on ethical, legal, and societal implications (ELSI). Using international case studies, we show how challenges can be addressed and lessons learned in advancing the safe, socially-acceptable use of population data for public benefit. Based on the case studies, we discuss the common ELSI principles in operation, we illustrate examples of a data scrutiny panel and a consumer panel, and we propose a set of ELSI-based recommendations to inform new and developing data-intensive initiatives.We conclude that although there are many ELSI issues to be overcome, there has never been a better time or more potential to leverage the benefits of population data for public benefit. A variety of initiatives, with different operating models, have pioneered the way in addressing many challenges. However, the work is not static, as the ELSI environment is constantly evolving, thus requiring continual mutual learning and improvement via the IPDLN and beyond.

Keyword

Data science; Big data; Medical informatics; International Population Data Linkage Network

MeSH Terms

Information Dissemination
Information Storage and Retrieval
Investments
Learning
Medical Informatics
Full Text Links
  • EPIH
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr