Yonsei Med J.  2016 Nov;57(6):1347-1353. 10.3349/ymj.2016.57.6.1347.

Lack of Superiority for Soluble ST2 over High Sensitive C-Reactive Protein in Predicting High Risk Coronary Artery Calcium Score in a Community Cohort

Affiliations
  • 1Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea. shpark0530@yuhs.ac

Abstract

PURPOSE
Soluble ST2 (sST2) is an emerging prognostic biomarker in patients with cardiovascular disease (CVD). A recent study showed that sST2 predicted incident hypertension. High sensitive C-reactive protein (hsCRP) has been a widely-used biomarker for risk-stratifying in CVD. We compared the abilities of sST2 and hsCRP to predict high risk coronary artery calcium score (CACS).
MATERIALS AND METHODS
The CACS was assessed by cardiac computed tomography, and sST2 was measured in 456 subjects enrolled in the Mapo-gu community cohort. In accordance with the 2013 ACC/AHA guidelines, we defined the high risk CACS group as individuals with a CACS ≥300 Agatston units (AU).
RESULTS
There were 99 (21.7%) subjects with a CACS ≥300 AU. There was a strong correlation between log sST2 and log hsCRP (r=0.128, p=0.006), and both log sST2 and log hsCRP showed significant associations with CACS (r=0.101, p=0.031 for sST2, r=0.101, p=0.032 for hsCRP). In net reclassification improvement (NRI) analysis, the NRI for hsCRP over sST2 was significant [continuous NRI 0.238, 95% confidence interval (CI) 0.001-0.474, integrated discrimination index (IDI) 0.022, p=0.035], while the NRI for sST2 over hsCRP was not significant (continuous NRI 0.212, 95% CI -0.255-0.453, IDI 0.002, p=0.269).
CONCLUSION
sST2 does not improve net reclassification for predicting a high risk CACS. Using hsCRP provides superior discrimination and risk reclassification for coronary atherosclerosis, compared with sST2.

Keyword

Soluble ST2; high sensitive C-reactive protein; coronary artery calcium score; atherosclerosis

MeSH Terms

Aged
Biomarkers
C-Reactive Protein/*analysis
Calcium
Computed Tomography Angiography
Coronary Angiography/*methods
Coronary Artery Disease/*diagnostic imaging
Coronary Vessels/*diagnostic imaging
Female
Humans
Interleukin-1 Receptor-Like 1 Protein
Male
Middle Aged
Population Surveillance
Predictive Value of Tests
Prognosis
Risk
Risk Factors
Tomography, X-Ray Computed
Vascular Calcification/*diagnostic imaging
Biomarkers
Interleukin-1 Receptor-Like 1 Protein
C-Reactive Protein
Calcium

Figure

  • Fig. 1 Mean differences in sST2 (A) and hsCRP (B) between the low and high coronary artery calcium score groups (<300 Agatston units vs. ≥300 Agatston units). *Means p value <0.01 by Mann-Whitney U test between low and high CACS group. sST2, soluble ST2; hsCRP, high sensitive C-reactive protein; CACS; coronary artery calcium score.


Reference

1. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007; 49:1860–1870.
2. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008; 358:1336–1345.
Article
3. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129:25 Suppl 2. S49–S73.
4. Januzzi JL Jr. ST2 as a cardiovascular risk biomarker: from the bench to the bedside. J Cardiovasc Transl Res. 2013; 6:493–500.
Article
5. van Kimmenade RR, Januzzi JL Jr. Emerging biomarkers in heart failure. Clin Chem. 2012; 58:127–138.
Article
6. Felker GM, Fiuzat M, Thompson V, Shaw LK, Neely ML, Adams KF, et al. Soluble ST2 in ambulatory patients with heart failure: association with functional capacity and long-term outcomes. Circ Heart Fail. 2013; 6:1172–1179.
7. Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014; 2:65–72.
Article
8. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008; 205:339–346.
Article
9. Ho JE, Larson MG, Ghorbani A, Cheng S, Vasan RS, Wang TJ, et al. Soluble ST2 predicts elevated SBP in the community. J Hypertens. 2013; 31:1431–1436.
Article
10. Gopal DM, Larson MG, Januzzi JL, Cheng S, Ghorbani A, Wollert KC, et al. Biomarkers of cardiovascular stress and subclinical atherosclerosis in the community. Clin Chem. 2014; 60:1402–1408.
Article
11. Won H, Kang SM, Shin MJ, Oh J, Hong N, Park S, et al. Plasma adiponectin concentration and its association with metabolic syndrome in patients with heart failure. Yonsei Med J. 2012; 53:91–98.
Article
12. Yu HT, Oh J, Chang HJ, Lee SH, Shin EC, Park S. Serum monokine induced by gamma interferon as a novel biomarker for coronary artery calcification in humans. Coron Artery Dis. 2015; 26:317–321.
Article
13. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990; 15:827–832.
Article
14. Dieplinger B, Januzzi JL Jr, Steinmair M, Gabriel C, Poelz W, Haltmayer M, et al. Analytical and clinical evaluation of a novel highsensitivity assay for measurement of soluble ST2 in human plasma--the Presage ST2 assay. Clin Chim Acta. 2009; 409:33–40.
Article
15. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012; 308:788–795.
Article
16. Januzzi JL, Horne BD, Moore SA, Galenko O, Snow GL, Brunisholz KD, et al. Interleukin receptor family member ST2 concentrations in patients following heart transplantation. Biomarkers. 2013; 18:250–256.
Article
17. Ponce DM, Hilden P, Mumaw C, Devlin SM, Lubin M, Giralt S, et al. High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood. 2015; 125:199–205.
Article
18. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013; 39:1003–1018.
Article
19. Libby P. Inflammation in atherosclerosis. Nature. 2002; 420:868–874.
Article
20. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012; 58:1673–1681.
Article
21. Li X, Li Y, Jin J, Jin D, Cui L, Li X, et al. Increased serum cathepsin K in patients with coronary artery disease. Yonsei Med J. 2014; 55:912–919.
Article
22. Dieplinger B, Egger M, Haltmayer M, Kleber ME, Scharnagl H, Silbernagel G, et al. Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: results from the Ludwigshafen risk and cardiovascular health study. Clin Chem. 2014; 60:530–540.
Article
23. Qasim AN, Budharaju V, Mehta NN, St Clair C, Farouk S, Braunstein S, et al. Gender differences in the association of C-reactive protein with coronary artery calcium in type-2 diabetes. Clin Endocrinol (Oxf). 2011; 74:44–50.
Article
24. Sung KC, Cho EJ, Lim YH, Shin J, Pyun WB, Kang SM, et al. HDL-C levels modify the association between C-reactive protein and coronary artery calcium score. Nutr Metab Cardiovasc Dis. 2014; 24:1240–1245.
Article
25. Xanthakis V, Larson MG, Wollert KC, Aragam J, Cheng S, Ho J, et al. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: implications for screening. J Am Heart Assoc. 2013; 2:e000399.
Article
26. Ojji DB, Opie LH, Lecour S, Lacerda L, Adeyemi OM, Sliwa K. The effect of left ventricular remodelling on soluble ST2 in a cohort of hypertensive subjects. J Hum Hypertens. 2014; 28:432–437.
Article
27. Andersson C, Enserro D, Sullivan L, Wang TJ, Januzzi JL Jr, Benjamin EJ, et al. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: The Framingham Heart Study. Atherosclerosis. 2016; 248:245–251.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr