1. Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep Learning for Health Informatics. IEEE J Biomed Health Inform. 2017; 21(1):4–21.
Article
2. Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016; 6:26094.
Article
3. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316(22):2402.
Article
4. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115–118.
Article
5. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press;2017. p. 168–177.
6. Gold M, McLaughlin C. Assessing HITECH Implementation and Lessons: 5 Years Later. Milbank Q. 2016; 94(3):654–687.
Article
7. Kim YG, Jung K, Park YT, Shin D, Cho SY, Yoon D, et al. Rate of electronic health record adoption in South Korea: A nation-wide survey. Int J Med Inform. 2017; 101:100–107.
Article
8. Weber G, Mandl K, Kohane I. Finding the Missing Link for Big Biomedical Data. JAMA. 2014; 311:2479–2480.
Article
14. Kho AN, Pacheco JA, Peissig PL, Rasmussen L, Newton KM, Weston N, et al. Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium. Sci Transl Med. 2011; 3(79):79re1.
Article
15. Yun JH, Ahn SJ, Kim Y. Development of clinical contents model markup language for electronic health records. Healthc Inform Res. 2012; 18(3):171–177.
Article
16. Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT. Towards ISO 13606 and openEHR archetype-based semantic interoperability. Stud Health Technol Inform. 2009; 150:260–264.
18. Goossen W, Goossen-Baremans A, van der Zel M. Detailed Clinical Models: A Review. Healthc Inform Res. 2010; 16(4):201.
Article
20. Pons E, Braun LMM, Hunink MGM, Kors JA. Natural Language Processing in Radiology: A Systematic Review. Radiology. 2016; 279(2):329–343.
Article
21. Demner-Fushman D, Elhadad N. Aspiring to Unintended Consequences of Natural Language Processing: A Review of Recent Developments in Clinical and Consumer-Generated Text Processing. Yearb Med Inform. 2016; (1):224–233.
Article
22. Névéol A, Zweigenbaum P. Clinical Natural Language Processing in 2015: Leveraging the Variety of Texts of Clinical Interest. Yearb Med Inform. 2016; (1):234–239.
Article
23. Shin SY, Park YR, Shin Y, Choi HJ, Park J, Lyu Y, et al. A De-identification method for bilingual clinical texts of various note types. J Korean Med Sci. 2015; 30(1):7–15.
Article
24. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NNC, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. Sci Rep. 2017; 7:46450.
Article
25. Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal. 2016; 33:170–175.
Article
28. Evans JP, Powell BC, Berg JS, T M, BK R. Finding the Rare Pathogenic Variants in a Human Genome. JAMA. 2017; 317(18):1904.
Article
29. Good BM, Ainscough BJ, McMichael JF, Su AI, Griffith OL. Organizing knowledge to enable personalization of medicine in cancer. Genome Biol. 2014; 15(8):438.
Article
31. AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017; DOI:
10.1158/2159-8290.CD-17-0151. Forthcoming.
32. International Organization for Standardization. ISO/TS 20428:2017 - Health informatics -- Data elements and their metadata for describing structured clinical genomic sequence information in electronic health records [Internet]. cited 2017 July 8. Available from:
https://www.iso.org/standard/67981.html.
37. Andermann A. CLEAR Collaboration. Taking action on the social determinants of health in clinical practice: a framework for health professionals. CMAJ. 2016; 188(17-18):E474–E483.
Article
42. Erlich Y, Narayanan A. Routes for breaching and protecting genetic privacy. Nat Rev Genet. 2014; 15(6):409–421.
Article