1. World Health Organization. Global health and aging. Geneva, Switzerland: World Health Organization;2011.
2. Nia AM, Mozaffari-Kermani M, Sur-Kolay S, Raghunathan A, Jha NK. Energy-efficient long-term continuous personal health monitoring. IEEE Trans Multiscale Comput Syst. 2015; 1(2):85–98.
Article
3. Mostaghel R. Innovation and technology for the elderly: systematic literature review. J Bus Res. 2016; 69(11):4896–4900.
Article
4. World Health Organization. Global recommendations on physical activity for health. Geneva, Switzerland: World Health Organization;2010.
5. Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors (Basel). 2012; 12(2):2255–2283.
Article
6. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel). 2014; 14(2):3362–3394.
Article
7. Haghi M, Thurow K, Stoll R. Wearable devices in medical Internet of Things: scientific research and commercially available devices. Healthc Inform Res. 2017; 23(1):4–15.
Article
8. El-Amrawy F, Nounou MI. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc Inform Res. 2015; 21(4):315–320.
Article
9. Miller DJ, Freedson PS, Kline GM. Comparison of activity levels using the Caltrac accelerometer and five questionnaires. Med Sci Sports Exerc. 1994; 26(3):376–382.
Article
10. Lee YS, Ho CS, Shih Y, Chang SY, Robert FJ, Shiang TY. Assessment of walking, running, and jumping movement features by using the inertial measurement unit. Gait Posture. 2015; 41(4):877–881.
Article
11. Vrijkotte TG, van Doornen LJ, de Geus EJ. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension. 2000; 35(4):880–886.
Article
12. Bastien GJ, Willems PA, Schepens B, Heglund NC. Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol. 2005; 94(1-2):76–83.
Article
13. Purser JL, Weinberger M, Cohen HJ, Pieper CF, Morey MC, Li T, et al. Walking speed predicts health status and hospital costs for frail elderly male veterans. J Rehabil Res Dev. 2005; 42(4):535–546.
Article
14. Shinkai S, Watanabe S, Kumagai S, Fujiwara Y, Amano H, Yoshida H, et al. Walking speed as a good predictor for the onset of functional dependence in a Japanese rural community population. Age Ageing. 2000; 29(5):441–446.
Article
15. Corbellini S, Ramella C, Fallauto C, Pirola M, Stassi S, Canavese G. Low-cost wearable measurement system for continuous real-time pedobarography. In : Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA); 2015 May 7–9; Turin, Italy. p. 639–644.
16. Zhang T, Lu J, Uswatte G, Taub E, Sazonov ES. Measuring gait symmetry in children with cerebral palsy using the SmartShoe. In : Proceedings of the IEEE Healthcare Innovation Conference (HIC); 2014 Oct 8–10; Seattle, WA. p. 48–51.
17. Sazonov ES, Fulk G, Hill J, Schutz Y, Browning R. Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans Biomed Eng. 2011; 58(4):983–990.
Article
18. Boulton AJ, Franks CI, Betts RP, Duckworth T, Ward JD. Reduction of abnormal foot pressures in diabetic neuropathy using a new polymer insole material. Diabetes Care. 1984; 7(1):42–46.
Article
19. Lawrence TL, Schmidt RN. Wireless in-shoe force system [for motor prosthesis]. In : Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1997 Oct 30–Nov 2; Chicago, IL. p. 2238–2241.
20. Konno A, Kato N, Shirata S, Furuta T, Uchiyama M. Development of a light-weight biped humanoid robot. In : Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2000 Oct 31–Nov 5; Takamatsu, Japan. p. 1565–1570.
21. Eils E, Streyl M, Linnenbecker S, Thorwesten L, Volker K, Rosenbaum D. Characteristic plantar pressure distribution patterns during soccer-specific movements. Am J Sports Med. 2004; 32(1):140–145.
Article
22. Hellstrom P, Folke M, Ekstrom M. Wearable weight estimation system. Procedia Comput Sci. 2015; 64:146–152.
Article
23. Joo SB, Oh SE, Sim T, Kim H, Choi CH, Koo H, et al. Prediction of gait speed from plantar pressure using artificial neural networks. Expert Syst Appl. 2014; 41(16):7398–7405.
Article
24. Warren GL, Maher RM, Higbie EJ. Temporal patterns of plantar pressures and lower-leg muscle activity during walking: effect of speed. Gait Posture. 2004; 19(1):91–100.
Article
25. Segal A, Rohr E, Orendurff M, Shofer J, O'Brien M, Sangeorzan B. The effect of walking speed on peak plantar pressure. Foot Ankle Int. 2004; 25(12):926–933.
Article
26. Pataky TC, Caravaggi P, Savage R, Parker D, Goulermas JY, Sellers WI, et al. New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). J Biomech. 2008; 41(9):1987–1994.
Article
27. Hellstrom PA, Akerberg A, Ekstrom M, Folke M. Walking intensity estimation with a portable pedobarography system. Stud Health Technol Inform. 2016; 224:27–32.
29. Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing. 1997; 26(1):15–19.
Article