Nat Prod Sci.  2018 Jun;24(2):119-124. 10.20307/nps.2018.24.2.119.

Antioxidant Compounds Isolated from the Roots of Phlomis umbrosa Turcz.

Affiliations
  • 1College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongsan 38430, Republic of Korea. woomh@cu.ac.kr
  • 2Center for Drug Research and Technology Transfer, Phutho College of Medicine and Pharmacy, Viettri City, Phutho Province 290000, Vietnam.
  • 3School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Abstract

Two triterpenoids, arjunolic acid (1), belleric acid (2), five phenylethanoids, martynoside (3), orobanchoside (4), 3,4-dihydroxyphenethylalcohol-6-O-caffeoyl-β-D-glucoside (5), leucosceptoside B (6), lunariifolioside (7), four phenolic acids, ferulic acid (8), syringic acid (9), vanillic acid (10), 4-hydroxybenzoic acid (11), and one lignan, (+)-syringaresinol-β-D-glucoside (12), were isolated from the roots of P. umbrosa. All isolated compounds were explored for their antioxidant potential in the DPPH and ABTS assays. In DPPH assay, compound 5 showed high antioxidant capacity. Compounds 3, 4, 6, and 7 displayed considerable antioxidant activities. In addition, compounds 5-7 exhibited potential antioxidant capacities in the ABTS assay.

Keyword

Phlomis umbrosa; triterpenoids; phenylethanoids; phenolics; antioxidant

MeSH Terms

Phenol
Phlomis*
Vanillic Acid
Phenol
Vanillic Acid

Figure

  • Fig. 1. The structures of isolated compounds (1 – 12) from the roots of P. umbrosa.


Reference

References

(1). Shen L.., Ji H. F.Trends Food Sci. Technol. 2017. 68:51–55.
(2). Bennett L. L.., Rojas S.., Seefeldt T. J.Exp. Clin. Med. 2012. 4:215–222.
(3). Lee D.., Kim Y. S.., Song J.., Kim H. S.., Lee H. J.., Guo H.., Kim H.Molecules. 2016. 21:461.
(4). Zhang Y.., Wang Z. Z. J.Pharm. Biomed. Anal. 2008. 47:213–217.
(5). Liu P.., Deng R.., Duan H.., Yin W.Zhongguo Zhong Yao Za Zhi. 2009. 34:867–870.
(6). Skrzypek Z.., Wysoki ska H.., wiatek L.., Wróblewski A. E. J.Nat. Prod. 1999. 62:127–129.
(7). Nishibe S.., Tamayama Y.., Sasahara M.., Andary C.Phytochemistry. 1995. 38:741–743.
(8). Matsumoto M.., Koga S.., Shoyama Y.., Nishioka I.Phytochemistry. 1987. 26:3225–3227.
(9). Saraco lu., Harput Ü.., Çaliþ Turk. J. Chem. 2002. 26:133–142.
(10). Çali ., Kirmizibekmez H.Phytochemistry. 2004. 65:2619–2625.
Article
(11). Sajjadi S. E.., Shokoohinia Y.., Moayedi N. S. Jundishapur J.Nat. Pharm. Prod. 2012. 7:159–162.
(12). Ngan L. T. M.., Moon J. K.., Shibamoto T.., Ahn Y. J. J.Agric. Food Chem. 2012. 60:9062–9073.
(13). Nguyen D. H.., Zhao B. T.., Le D. D.., Kim K. Y.., Kim Y. H.., Yoon Y. H.., Woo K. S.., Ko J. Y.., Woo M. H.Nat. Prod. Sci. 2016. 22:140–145.
(14). Shahat A. A.., Abdel-Azim N. S.., Pieters L.., Vlietinck A. J.Fitoterapia. 2004. 75:771–773.
(15). Manna P.., Sinha M.., Sil P. C.Arch. Toxicol. 2008. 82:137–149.
(16). Pendota S. C.., Aderogba M. A.., Van Staden J. S.Afr. J. Bot. 2015. 96:91–93.
(17). Papoutsi Z.., Kassi E.., Mitakou S.., Aligiannis N.., Tsiapara A.., Chrousos G. P.., Moutsatsou P. J.Steroid Biochem. Mol. Biol. 2006. 98:63–71.
(18). Yin Z.., Zhang W.., Feng F.., Zhang Y.., Kang W.Food Science and Human Wellness. 2014. 3:136–174.
(19). Yamazaki T.., Shimosaka S.., Sasaki H.., Matsumura T.., Tukiyama T.., Tokiwa T.Toxicol. In Vitro. 2007. 21:1530–1537.
(20). Kumar N.., Pruthi V.Biotechnol. Rep. 2014. 4:86–93.
(21). Karthik G.., Angappan M.., Vijayakumar A.., Natarajapillai S.Biomed. Prev. Nutr. 2014. 4:203–208.
(22). Calixto-Campos C.., Carvalho T. T.., Hohmann M. S. N.., Pinho-Ribeiro F. A.., Fattori V.., Manchope M. F.., Zarpelon A. C.., Baracat M. M.., Georgetti S. R.., Casagrande R.., Verri W. A.Jr. J. Nat. Prod. 2015. 78:1799–1808.
(23). Cho J. Y.., Moon J. H.., Seong K. Y.., Park K. H.Biosci. Biotehnol. Biochem. 1998. 62:2273–2276.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr