Korean J Dent Mater.  2018 Jun;45(2):111-128. 10.14815/kjdm.2018.45.2.111.

Effect of Surface Roughness on the Mechanical Properties of Ceramic-Polymer Blocks for CAD/CAM Dental Restoration

Affiliations
  • 1Department of Dental Materials, School of Dentistry, Chosun University, Gwangju, Korea. ymgo@chosun.ac.kr

Abstract

The effect of surface roughness of ceramic-polymer CAD/CAM blocks on the mechanical properties was investigated in this study. Commercially available Polyglass (Vericom, Korea) and Enamic (Vita, Germany) were selected for this purpose. They were cut into either (4.0×2.1×17.0) mm and (3.0×4.0×17.0) mm, followed by grinding, and polished sequentially with 6 µm and 1 µm diamond paste. Flexural strength, fracture toughness, and Weibull analysis were determined according to ISO 6872 Dentistry-Ceramic materials. The elastic moduli were calculated from a stress-strain curves under flexural loading. The statistical significances of the mechanical properties between the products and surface roughness were analyzed with ANOVA and pared t-test at a significance level of 0.05. After grinding with 6 µm diamond paste after cutting by observing with an atomic force microscope, the arithmetic average roughness decreased to 47~49% and the maximum roughness decreased to 68~69%. When polishing with 1 µm diamond paste, The average roughness decreased to 13~22% and the maximum roughness decreased to 16~19%. When the flexural load was applied, stress increased linearly and fractured without plastic deformation both Polyglass and Enamic. As the surface roughness decreased, the mechanical properties were increased both Polyglass and Enamic. However, the mechanical properties of Polyglass increased up to P3, while Enamic showed almost maximal values at E2, after that there was no significant differences between E2 and E3. It could be due to the different microstructure between two blocks used in this experiment.

Keyword

CAD/CAM Block; Surface roughness; Strength; Weibull analysis; Fracture toughness

MeSH Terms

Diamond
Plastics
Diamond
Plastics
Full Text Links
  • KJDM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr